
Why Precision Matters 
in Managing Open 
Source Software



2

WHY PRECISION MATTERS IN MANAGING OPEN SOURCE SOFTWARE

Why Precision Matters
Open source software use is widespread. Sonatype’s 

2018 State of the Software Supply Chain report shows 

that the average application includes over 100 open 

source components, which make up 80-90% of an 

application’s codebase. In 2018, alone, the average 

number of npm package downloads by Javascript 

developers was 7 billion each week and Java download 

requests weighed in at 146 billion for the year – a 68% 

increase over the previous year.

There are good reasons for the growing popularity of 

open source by software teams. Open source compo-

nents provide critical functionality to development teams, 

accelerating time to market, while dramatically lowering 

development costs. If even just 50% of an application is 

comprised of open source, replacing it with custom code 

would require an organization to either double its devel-

opment team or double its development time. Neither are 

acceptable options in today’s world.

As open source consumption has grown, so has the 

awareness that its unmanaged use brings risk from 

security vulnerabilities and restrictive licenses in those 

components. Today, 1-in-8 open source components 

contains a known security vulnerability, and the average 

time from exposure to exploit has decreased from 45 

days to 3. The cadence of modern software development 

has outpaced organizational capacity for manually identi-

fying risky components granular enough to mitigate that 

risk. Capitalizing on this growing need, several vendors 

have entered the market offering varying capabilities to 

address the problem. This paper will examine the differ-

ent approaches used by these companies.

You Can’t Protect What You Can’t See
A basic tenet of any security program is to understand 

the risks present in your systems and applications, then 

prioritize risk mitigation steps. For open source risks, this 

requires organizations to have full visibility to all of the 

open source code in an application. Without this, you 

cannot protect the applications from known risks such as 

improper licenses or security vulnerabilities.

The Software Bill of Materials
Every manufacturing process requires a bill of materials; 

a listing of every part required to build an item. This helps 

companies standardize on parts and reduce costs, across 

their supply chain. It also allows them to quickly address 

quality issues. When a part is faulty (think of a car’s 

airbag) they are able to quickly determine which units are 

affected and prioritize remediation steps. 

The same is true for software. With a software Bill of 

Materials (BoM) an organization can track every external 

“part” (or component) they use, and better resolve issues 

when a “faulty” component arises. For security use cases, 

knowing the precise version of each component in play 

is critical, since vulnerabilities often affect only specific 

versions of a component. Precision allows teams to triage 

risks quickly, reduce unnecessary rework, and stay one 

step ahead of adversaries.

How Software is Built
As previously noted, open source software has changed 

how software is built. While 15 years ago it was common 

to build an application “from scratch”, the adoption of 

open source has advanced to the point that open source 

comprises the majority of the average application’s 

codebase. Developers maintain open source 

components in their workspaces and in repositories, 

defaulting to open source over writing custom code. This 

allows open source to enter the code base in three ways:

 ⊲ Direct Dependencies – Open source components 

are often added directly to the codebase by software 

engineers. This is the only way to use open source 

components in programming languages that do not 

use “package managers”, like C and C++.

 ⊲ Declared Dependencies – In programing languages 

that use package managers, software engineers may 

declare that a component is required in a manifest 

used by the build process. This will cause the build tool 



3

WHY PRECISION MATTERS IN MANAGING OPEN SOURCE SOFTWARE

to import the component from a binary repository like 

Nexus Repository.

 ⊲ Transitive Dependencies – These occur when a 

declared dependency requires additional open source 

components to run properly.

License and security risk can occur in components added 

to an application by any of these three methods, so it’s 

important to account for components added by any 

method.

The Consequences of Inaccurate BoMs
An incomplete BoM that is missing components 

can result in security risks. Thousands of security 

vulnerabilities are disclosed in open source each year. 

Exploits for these are often publicly available within days 

of the disclosure, allowing a simplified attack vector for 

even inexperienced attackers. Such was the case with 

the well known Equifax breach, as well as breaches at 

the Canada Revenue Agency, Okinawa Power, and The 

University of Delaware. From a licensing standpoint, if 

a missed component was published under a restrictive 

open source license like GPL, the “derivative works” 

comprising the rest of the application could put IP at 

risk. Imagine a large manufacturing company having to 

release code that gives them a market advantage to the 

open source community and competitors.

An imprecise BoM occurs when components are mis-

identified, either by selecting the wrong open source 

project or the incorrect version of the correct project. The 

former case brings with it the same risk as with missing 

the component entirely. The latter case adds risk that an 

organization will improperly assume a vulnerability does 

not affect a component, or that it falsely affects a compo-

nent (resulting in unnecessary rework).

Creating a complete and precise BoM is not a simple 

process. In earlier times, a partial BoM might be created 

by asking the development manager for a list. The man-

ager would write down the components she was aware 

of, but the list was almost always incomplete. Individual 

developers would likely not have complete listings either, 

as they are under constant pressure to deliver required 

functionality by a specific date. Using open source is a 

natural part of their workdays, and manually making note 

of each library and version is an unacceptable (and unre-

liable) practice. Further, even if a developer noted each 

component added to the code base, they are unlikely to 

know the dozens of transitive dependencies automati-

cally added to the build.

Building a BoM
An automated process for generating a bill of material 

(BoM) and monitoring for risk reduces the burden on 

developers, allows compliance, security, and engineering 

teams to agree on policies, and enforce those policies. 

The more precise and complete the Bill of Material, the 

more useful and actionable the results. First, we will look 

at a quick but incomplete approach, then at a slower but 

still imprecise approach.

Build Process Monitoring for 
Declared Dependencies
The easiest way to build a BoM is to simply look at which 

components the developer has declared as required 

for a functioning application (declared dependencies) in 

the package manifest. Tools using this approach identify 

components by looking at packaging instructions in files 

or manifests and looking up records on the file names 

alphanumerically. In other words, this simply repeats 

what the developer has listed and confirms what the 

organization believes exists in the software supply chain.

While this is certainly the fastest way to generate a BoM, 

it is deficient in many ways:

Completeness

 ⊲ Package managers are blind to any direct dependen-

cies added to the codebase by developers. Since this 

approach can only restate what is listed in the package 

manager, it will miss these components.

 ⊲ This approach cannot be used for software languages 

that do not use package managers, like C and C++. 

Enterprises developing code in multiple languages may 

require multiple tools.

Precision

 ⊲ A package manager provides “coordinates” for a com-

ponent so the build system knows from which location 



4

WHY PRECISION MATTERS IN MANAGING OPEN SOURCE SOFTWARE

to fetch the component (e.g..org.apache.struts:struts-

core:1.0). Duplication of coordinates is a common prob-

lem. Just because the package manager thinks it has a 

file with the right namespace, doesn’t mean it’s not an 

altered one, from another repo. Even a one character 

difference can create either a false positive or a false 

negative - misidentifying the component completely.

 ⊲ There are often unknown components inserted by 

the packaging systems that cannot be identified 

alphanumerically.

 ⊲ Multiple packaging systems are commonly used, which 

simply compounds the issues above – creating more 

noise and a BoM that leaves developers chasing after 

vulnerabilities that may not be present.

Source Code Signatures for 
Direct Dependencies
Another simple way to create a BoM is to review source 

code and calculate hashes for each file. These hashes 

are compared to a database of hashes for known 

(inventoried) source code and code snippets. While this is 

an improvement on simply monitoring the build process 

and will often catch components added directly by 

developers, it too has shortcomings.

DevOps Compatibility

 ⊲ Timeliness - DevOps environments require accurate 

and immediate feedback. Calculating hashes and com-

paring those to a vendor database in the cloud takes 

time. This method may also produce “partial matches” 

(see below) that require manual review, further delaying 

results.

Completeness

 ⊲ Modified libraries may not be detected. Developers 

often add, remove, or modify open source compo-

nents. This will cause the hashes to not match those 

previously calculated by the vendor, resulting in either 

missing components or requiring manual review to 

identify the correct component and version.

Precision

 ⊲ Incorrect matching can mistakenly confuse similar 

components. This is because common coding patterns 

exist, making different pieces of source code appear 

similar. Source code matching is based on snippet 

analysis which can result in many false positives.

 ⊲ Redundant matches result because a given piece of 

source code, especially in open source, often exists in 

multiple projects and, within a project, likely exists in 

many versions of a component. This results in a BoM 

with duplicated components. When a vulnerability 

is reported against that component, it too, appears 

multiple times.

A Different Approach: Advanced 
Binary Fingerprinting
Development and security groups, particularly DevOps 

teams, need speed, accuracy, and precision. The 

inability of above approaches to conduct a complete 

and precise listing of all components in an application 

led Sonatype to invest the necessary time and capital 

to invent new techniques, processes, and algorithms 

in data science. Advanced Binary Fingerprinting 

allows Sonatype to identify all of the open source 

components in an application quickly and precisely, 

avoiding the false positives and false negatives 

common in other methodologies and enabling a mature 

Source Composition Analysis solution in the DevOps 

environment.

Here are two examples of the result:

 ⊲ Java – An application is shipped as a Java Enterprise 

Archive (EAR) artifact. The EAR contains three Java web 

applications (WAR). Each of these contain numerous 

JAR files, including one with a Java JAR file created by 

patching (forking) an open source project and recom-

piling it to create a new custom JAR. With Sonatype 

Advanced Binary Matching, we can identify all nested 

files successfully. In addition, our patented algorithm 

will trigger the similarity result and indicate a close 

partial match to the forked open source including the 

project version.

 ⊲ JavaScript – An application is shipped as a self-extract-

ing zip file. The file contains a number of JavaScript 

files, including one with a dependency for jQuery. 

However, this file was renamed, and has therefore lost 

any identifying information to the jQuery dependency. 

Using Sonatype’s proprietary matching, the component 

is identified, and traced back to the original jQuery 

dependency, including the specific version.



5

WHY PRECISION MATTERS IN MANAGING OPEN SOURCE SOFTWARE

Precision Matters in Data Intelligence
Once you can precisely identify components, the 

next step is assuring that the metadata describing the 

attributes of a component are sufficiently precise. This 

supports DevOps environments by allowing decisions 

about a component’s acceptability (compared to a policy) 

to be adjudicated through automated processes instead 

of by human review.

As with component identification, searching through var-

ious databases for metadata such as security disclosures 

by the name of a component will inevitably produce 

poor information. Recognizing this, Sonatype invests 

heavily in a team of data experts that conduct proprietary 

research to develop deep intelligence on components. 

This team leverages public and private data feeds, mines 

popular repositories (like GitHub), and monitors project 

web sites to provide information on more vulnerabilities 

than sources like the National Vulnerability Database or 

mailing lists. Further, the team is able to surface informa-

tion to users more quickly, identifying those vulnerabilities 

weeks earlier than other sources. More importantly, the 

data researchers never rely solely on those information 

sources without a thorough, independent review of the 

software risk.

For licensing, this means not just relying on the license 

declarations made by the project, but also examining 

headers within the source code. For security defects, this 

means not relying on the reported problem but identi-

fying the root cause of a vulnerability and documenting 

paths to remediation or alternative resolution. For other 

attributes, this means both quantitative and qualitative 

assessments of architectural and project integrity.

Enforce Policies with Confidence
Precision is the only way to empower teams to make 

better decisions, so that they can scale faster with 

controls that are flexible enough to reflect the policies of 

the organization in the context of the applications that are 

being developed.

Every organization, every team, and every application 

is fundamentally unique. Therefore, you need to ask 

yourself the following question: at what point in the 

software lifecycle do you want to examine the attributes 

of a component?

 ⊲ Every time a developer downloads a new component?

 ⊲ Whenever a development team produces a build?

 ⊲ During pre-release testing?

 ⊲ When applications are ready for production?

Which is best?
The answer, of course, is that all of them are important 

because the world of modern software development is 

not one size fits all. Indeed, every situation is different 

and therefore it is critical to have component intelligence 

tools that are flexible enough to add value at every 

stage of the DevOps tool chain. This includes the 

developer IDE, build systems, repository managers, CI/

CD tools, image constructors, delivery orchestrators, and 

production runtime environments.

Of course, ensuring the security of an application does 

not end when the application is deployed. Software secu-

rity is never permanent. The discovery of a new attack 

vector or the disclosure of a new vulnerability in an open 

source component can instantly change the security 

profile of an application. That means preserving a bill of 

materials and monitoring the ecosystem for new infor-

mation, such as the discovery of a new security defect, is 

imperative. 



European Office
168 Shoreditch High St, 5th Fl 
London E1 6JE
United Kingdom

Headquarters
8161 Maple Lawn Blvd, Suite 250 
Fulton, MD 20759 
USA • 1.877.866.2836

APAC Office
60 Martin Place, Level 1
Sydney 2000, NSW
Australia

Sonatype Inc.
www.sonatype.com
Copyright 2020 
All Rights Reserved.

Sonatype is the leader in software supply chain automation technology with more than 300 employees, over 1,000 enterprise customers, and 

is trusted by over 10 million software developers. Sonatype’s Nexus platform enables DevOps teams and developers to automatically integrate 

security at every stage of the modern development pipeline by combining in-depth component intelligence with real-time remediation guidance.

For more information, please visit Sonatype.com, or connect with us on Facebook, Twitter, or LinkedIn.

In Summary
When it comes to using open source components to 

manufacture modern software, the bottom line is this – 

complete and precise intelligence is critical. Tools that 

lack visibility and precision cannot scale to the needs 

of modern software development. Inaccurate and/or 

incomplete data will leave organizations to deal with 

vulnerabilities, licensing, and other quality issues that 

lead directly to higher costs and reduced innovation.

Sonatype Nexus Intelligence and Advanced Binary 

Fingerprinting power a unique solution that enables 

organizations to:

 ⊲ Empower innovation by equipping teams with the 

ability to precisely identify the highest quality open 

source components.

 ⊲ Scale fast with component intelligence that is precise 

enough to enable automation at every phase of the 

software lifecycle.

 ⊲ Control component usage with flexible policies that 

can promote granular decision support across varying 

teams, languages, and application profiles.

With precise identification on your side, you have 

the power to error-proof the software supply chain. 

This means eliminating, with certainty, the risks and 

inefficiencies that diminish innovation. This also means 

unlocking the full potential of talented developers so you 

can innovate faster and compete more effectively on a 

global playing field.

We welcome any questions that you might have and we 

encourage you to sample the incredible value of Nexus 

Intelligence and Advanced Binary Fingerprinting. To take 

the next step, try our free tool, Nexus Vulnerability 

Scanner, or schedule a demo today.

https://www.sonatype.com/appscan
https://www.sonatype.com/appscan

