
Understanding Open
Source Risk

2

UNDERSTANDING OPEN SOURCE RISK

How open source risk impacts your SDLC
The risks associated with using open source software (OSS) are diverse, and not all are
created equal.

An outdated library may cause compatibility issues that disrupt your development process.
Legal complexities of OSS licensing can lead to compliance challenges that, if overlooked,
could result in significant legal and financial repercussions. A security vulnerability in an OSS
component can open the door to malware attacks.

Given this diversity, it’s crucial to approach open source risk with a comprehensive strategy that

addresses the full spectrum of potential threats.

Types of open source risk
While vulnerabilities and malware may seem to be similar or even interchangeable terms, they
are different concepts.

Knowing their distinct characteristics is essential for building effective strategies to optimize
your software supply chain and reduce your open source risk.

Vulnerability
A vulnerability is an unintentional weakness in software that can be exploited to gain
unauthorized access to systems or networks. While they can result in damage or manipulation
to resources or operations, vulnerabilities are not inherently malicious and may result from
software development oversights.

When identified, they are assigned a Common Vulnerabilities and Exposures (CVE) number to
help developers recognize and address these issues. In many cases, using a different version

of the affected software component that has been patched can mitigate your open source risk.

Malware
In contrast, malware is software explicitly designed to inflict harm. Malware exists in many
forms, each with specific harmful functionalities such as the following:

 ⊲ Viruses attach to legitimate programs
and replicate, spreading upon program
execution.

 ⊲ Worms replicate themselves to spread
across computing systems.

 ⊲ Trojans disguise themselves as legitimate
software and subsequently perform
harmful activities.

 ⊲ Spyware secretly monitors and collects
user information.

 ⊲ Ransomware encrypts data, demanding a
ransom for its release.

 ⊲ Adware displays unwanted
advertisements, often without the user’s
consent.

 ⊲ Botnets act as networks of infected
computers controlled remotely by threat
actors.

 ⊲ Rootkits conceal the presence of other
malware by modifying operating systems.

3

UNDERSTANDING OPEN SOURCE RISK

Differences between vulnerabilities and malware

Understanding attack vectors
In order to mitigate your open source risk, you need to understand the role attack vectors play
in software supply chain attacks. An attack vector is a method or pathway a threat actor uses
to access and exploit vulnerabilities in a system, application, or network. A vector contains the
techniques employed to execute an attack and deliver malware.

Below you will find examples of a few common attack vectors in modern software supply
chain attacks.

Compromised accounts
Compromised accounts involve threat actors gaining unauthorized access to accounts,

typically of maintainers of open source projects. Threat actors inject malware into legitimate

components, which are then distributed to unsuspecting users. The trust placed in maintainers

and their components is exploited, making this approach particularly damaging.

An example of this is if a threat actor took control of an account and attacked via a version

of event-stream, an npm component that contained code designed to steal Bitcoin from

users’ wallets. This attack affected numerous applications and developers who relied on the

component, underscoring the critical importance of securing open source maintainer accounts.

INTENT DISCOVERY IMPACT

 ⊲ Vulnerabilities:
Unintentional, arising

from errors in the

software development

process.

 ⊲ Vulnerabilities:
Identified through

security testing, code

reviews, or reports,

and can then be

patched or mitigated.

 ⊲ Vulnerabilities:
Varies based on

severity if exploited

by a threat actor.

 ⊲ Malware:
Deliberately

created to deceive,

exploit, or harm users.

 ⊲ Malware:
Disguised as

legitimate software

and discovered

through analysis,

reports, or scans.

 ⊲ Malware:
Immediate and

intentionally harmful

actions often upon

installation.

4

UNDERSTANDING OPEN SOURCE RISK

Dependency confusion
Dependency confusion is an attack vector that exploits the mechanisms repositories use to
resolve software dependencies.

This attack sequence capitalizes on the ambiguity between private and public repository feeds:

1. Threat actors craft

malware and upload it

to public repositories

under the same names

as private components

used within an

organization.

2. By assigning a higher

version number to

the malware, threat

actors exploit the

repository’s default

behavior of preferring

the highest version

available.

3. This can lead an

installer script, intending

to pull a file from a

private repository, to

inadvertently download

the malware from the

public repository instead.

This not only compromises the software but also opens the door for further exploitation such as
code execution and data theft.

One real-life example is when Sonatype detected a dependency confusion attempt
targeting John Deere, where a threat actor uploaded a component named “johndeer” to the
PyPI repository. Designed to mimic an update, the component aimed to be automatically
downloaded by John Deere’s systems due to its higher version number. Sonatype’s automated
tools identified and flagged this activity, preventing a potential security breach.

Repository hijacking
In repository hijacking, a threat actor gains control of a repository, often by exploiting inactive
or abandoned open source repositories. Once in control, the threat actor can push malicious
updates that may go undetected due to the established trust in the repository, making this a
significant open source risk. These malicious updates, once published, distribute malware to
unsuspecting users who download or update components from the hijacked repository.

An example of repository hijacking involved a popular npm component for generating QR codes.
The component’s original repository had been abandoned, making it vulnerable to takeover. A
researcher claimed this inactive repository, gaining control to demonstrate a significant security
vulnerability in npm. This ethical demonstration highlighted the ease with which threat actors
could exploit similar vulnerabilities to distribute malware via widely used components.

Trojan
Designed to deceive users into installing them, Trojans may appear as innocuous files or
updates and can be bundled with legitimate software. But once installed, they can steal
sensitive data, create backdoors for remote system access, or download malware. Trojans
typically operate stealthily without showing clear signs of infection, making them hard to detect
and remove.

One example of a Trojan is when a threat actor uploaded over 450 malicious components to
PyPI. Once installed, these components executed a Windows Trojan that fetched additional
malware from a Dropbox URL, evading initial detection and deploying its payload.

5

UNDERSTANDING OPEN SOURCE RISK

Typosquatting
Typosquatting is an attack vector where threat actors create malware with names that
closely resemble those of legitimate components. By exploiting common typing errors, these
deceptively named components trick developers into downloading them instead of the
intended components. This deceptive strategy can lead to unintended code execution and
data theft as the malware is integrated into build systems.

A real-life example is when Sonatype detected a case of typosquatting on PyPI, where malware,
misnamed to impersonate the widely used “Requests,” tricked developers into downloading
them. Once installed, these components released ransomware, jeopardizing developers’
systems and risking extensive data theft and damage.

Common attack types
An attack type is the specific category or nature of a software supply chain attack, focusing

on the impact or outcome of the attack rather than the method used to deliver it. While an

attack vector embodies the “how” of an attack, an attack type details the “what” of an attack,

describing the effects after execution.

Backdoor
A backdoor is an attack type that bypasses normal authentication to gain unauthorized access
to systems, often installed by malware for continuous access.

A good example of a backdoor is from the 2020 SolarWinds attack that involved “Sunburst,” a
backdoor enabling extensive infiltration of government and corporate networks.

Code injection
Code injection is an attack that inserts malware into a program, enabling threat actors to
execute arbitrary operations.

A real-life example of code injection was back in 2022. The Log4j component experienced the
Log4Shell vulnerability that allowed remote code injection, affecting millions worldwide.

Credential exfiltration
Credential exfiltration is a method of unauthorized extraction of user credential information,
leading to further system exploitation.

A good example of a credential exfiltration is the 2012 LinkedIn breach that involved the theft of

over 6.5 million hashed passwords.

6

UNDERSTANDING OPEN SOURCE RISK

Crypto stealer or miner
A crypto-currency stealer or miner is malware that either steals cryptocurrency wallets or
covertly mines cryptocurrency using infected systems.

An example is the “python-dateutils” package, which masqueraded as a legitimate Python
library, targets Windows, Linux, and macOS systems to mine Monero cryptocurrency and steal
AWS credentials. This package employs techniques like Base64 encoding and ROT13 cipher

for obfuscation, and even exfiltrates sensitive data using a Discord webhook.

Data exfiltration
Data exfiltration is unauthorized data transfer from a system or network.The npm package
“speedy-ts-compiler” served as a distraction technique for data exfiltration by pretending
to install another empty package, while actually capturing the user’s IP address and system

username through manipulated npm commands.

Denial of service (DoS)
Denial of service (DoS) attacks aim to overwhelm networks with illegitimate requests to make
services unavailable.

CVE-2020-13935 is an example of a denial of service (DoS), and is a vulnerability in the Apache
Tomcat Websocket component that allows attackers to trigger an infinite loop by sending
payloads with invalid lengths. This flaw can severely disrupt services by consuming excessive

CPU resources until the affected application becomes unresponsive.

Hijacker
Hijacker malware redirects user traffic or alters system settings to display
unwanted advertisements.

An example of a hijacker attack is ChromeLoader malware, which is distributed through
VHD files disguised as illegal game hacks for platforms like Nintendo and Steam, hijacked
users’ browsers by installing malicious Chrome extensions. These extensions redirect users
to advertisement websites and collect browsing data, including browser credentials and

settings modifications.

Phishing
Phishing fraudulently attempts to obtain sensitive information by posing as a trustworthy entity.

In this example of a phishing campaign targeting Office 365 users, hackers employed a
malicious proxy server to bypass multi-factor authentication (MFA), capturing users’ credentials
and session cookies to gain unauthorized access to email accounts. This adversary-in-the-
middle (AiTM) technique facilitated business email compromise (BEC) and payment fraud
schemes, leveraging compromised accounts for financial gain .

European Office
168 Shoreditch High St, 5th Fl
London E1 6JE
United Kingdom

Headquarters
8161 Maple Lawn Blvd, Suite 250
Fulton, MD 20759
USA • 1.877.866.2836

APAC Office
60 Martin Place, Level 1
Sydney 2000, NSW
Australia

Sonatype Inc.
www.sonatype.com
Copyright 2023
All Rights Reserved.

Sonatype is the software supply chain security company. We provide the world’s best end-to-end software supply chain security solution, by

combining the only proactive malicious protection against malicious open source, the only enterprise grade SBOM management and the leading

open source dependency management platform. This empowers enterprises to create and maintain secure, quality, and innovative software

at scale. As founders of Nexus Repository and stewards of Maven Central, the world’s largest repository of Java open-source software, we are

software pioneers and our open source expertise is unmatched. We empower innovation with an unparalleled commitment to build faster, safer

software and harness AI and data intelligence to mitigate risk, maximize efficiencies, and drive powerful software development. More than 2,000

organizations, including 70% of the Fortune 100 and 15 million software developers, rely on Sonatype to optimize their software supply chains. To

learn more about Sonatype, please visit www.sonatype.com.

Protestware
Protestware is software modified by developers to include elements of protest, often disrupting
functionality or distributing messages to draw attention to social or ethical issues.

A good example of protestware is when the npm libraries “colors” and “faker” were
intentionally sabotaged by their maintainer in protest, causing them to disrupt thousands of
applications by entering infinite loops or deleting useful code. This act highlighted the ongoing

issues of open source sustainability and the pressures on unpaid developers.

Ransomware
Ransomware is an attack type that encrypts a victim’s files, blocking access until a ransom is

paid, often spreading through phishing or security vulnerabilities.

A real-life example of ransomware can be found in the PyPI packages “requesys,” “requesrs,”
and “requesr,” identified as typosquats of the legitimate “requests” library. These packages
contain ransomware that encrypts files on a user’s computer. The ransomware does not
demand payment. Instead, it uploads the decryption keys to a Discord server, making them

available without cost, underlining a more experimental or educational intent by the author.

Strengthening your defense
against open source risks
Understanding the distinctions between vulnerabilities, malware, and the various attack vectors
and types that exploit them is crucial to secure your software supply chain and reduce your
open source risk.

While vulnerabilities are unintentional weaknesses that can be mitigated with patches and
updates, malware is intentionally harmful and requires swift, decisive action to prevent damage.

By familiarizing yourself with these key concepts and the specific attack vectors outlined in
this guide, you can better defend against the growing open source risk landscape targeting
modern software development. A proactive and informed approach is essential to protect your
organization’s software supply chain from evolving threats.

https://www.sonatype.com/

	Welcome

