

Table of Contents

© 2015-PRESENT, SONATYPE INC. ALL RIGHTS RESERVED.

State of the Software Supply Chain 1
Open Source Scale and Consumption Behaviors 2

Persistent Risk and Consumer Complacency 3

Efficiency and Waste:

The Time Drain on Developers 4

A Call to Action and Vigilance: Proactive Management,

Continuous Security, and Advanced Tooling 5

10 Year Look Back 6
Attackers and the Evolution of

Software Supply Chain Exploits 7

Consumers of Open Source 11

Publishers of Open Source 11

SBOM Production by Open Source Projects 16

A Decade of Software Regulations 18

Navigating the Future of Open Source

and Software Supply Chain Security 21

Scale of Open Source 23
Open Source Supply Balloons Due to Malicious Actors 24

Open Source Consumption Rockets Through npm 26

2024 Ecosystems by the Numbers 27

Individual Ecosystem Analysis 28

Differentiating Software Vulnerabilities

and Open Source Malware 29

Vulnerabilities in the

Open Source Ecosystem 30

Open Source Malware & Next Gen Supply Chain Attacks

are Now Commonplace, Dangerous Business 31

Malware Types 32

Notable Malicious Packages 34

Evolution of Open Source Risk 35
Persistent Risk 37

Open Source Consumption 38

Can We Minimize Persistent Risk 39

Choice 40

The Impact of Foundation Support

on Open Source Quality 42

Complacency 44

Contamination 47

Optimizing Efficiency
& Reducing Waste 48
Size Doesn’t Matter: All Applications

Have Sizable Risk 49

Stop Wasting Developer Time —

What to Look for in an SCA Tool 50

Open Source License Risk Profile 54

Best Practices in Software
Supply Chain Management 56
Best Practices 57

Cybersecurity is a Universal Issue 58

Preparing for Governance and

Regulations Around the World 59

Reliable Dependency Management 65

Acknowledgments 66

About the Analysis 66

As we mark the 10th annual State of the Software Supply Chain report, the transformation of open

source software has been nothing short of profound. Open source consumption has exploded, with estimates placing

this year’s downloads at over 6.6 trillion. This reliance on open source components, now making up to 90% of the modern

software application, has ushered in both unprecedented innovation and complex challenges for software supply chains.

Because of this, the industry has also become increasingly regulated, moving from a hands-off approach in the early

2010s to proactive frameworks that address growing cybersecurity risks in the global software supply chain.

This year’s report, backed by data from over 7 million open source projects, double-clicks on many of the unsettling

trends in security and risk management we’ve been following in the past 10 reports. Notably, the rise of open source

malware and software supply chain attacks has become a critical threat. Examples such as the LUMMA malware found in

PyPI and the XZ Utils package backdoor highlight the growing sophistication of these attacks, which often bypass tradi-

tional security measures, leaving organizations vulnerable. In fact, the number of malicious packages has grown by 156%

year-over-year, posing a significant risk to enterprises that fail to manage their OSS dependencies effectively.

Here’s what else we found.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 1

EXECUTIVE SUMMARY

State of
the Software
Supply Chain

Open Source Scale and
Consumption Behaviors

Open source software adoption is at a multitrillion

request scale, with ecosystems like JavaScript (npm) and

Python (PyPI) leading the charge:

• JavaScript (npm) accounted for a staggering 4.5 trillion

requests in 2024, representing 70% year-over-year

growth in requests .

• Python (PyPI), driven by AI and cloud adoption, is esti-

mated to reach 530 billion package requests by the

end of 2024, up 87% year-over-year.

But this growth brings new risks. A rise in open source

malware has infiltrated open source ecosystems at an

alarming rate.

Over 512,847 malicious packages have been logged

just in the past year, a 156% increase year-over-year ,

highlighting a critical need for organizations to adapt their

consumption practices. Traditional security tools often

fail to detect these novel attacks, leaving developers and

automated build environments highly vulnerable. This

has resulted in a new wave of next-generation supply

chain attacks, which target developers directly, bypass-

ing existing defenses.

Further, each ecosystem presents different challenges.

For instance, npm has experienced much of its growth

from spam; Python is the fastest-growing in projects and

volume, and shows more vulnerabilities per package

compared to others; and Java (Maven) has an average of

28 versions per project.

Read more in our chapter on Open Source Scale.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 2

EXECUTIVE SUMMARY

O P E N S O U R C E S CA L E A N D C O N S U M P T I O N B E H AV I O R S BY T H E N U M B E R S

530 BILLION
Python (PyPI) package requests,
80% YoY increase LARGELY DRIVEN BY AI & CLOUD

4.5 TRILLION
JavaScript (npm) requests,
70% YoY growth

512,847
malicious packages discovered
since November 2023

156%
YoY growth of
malicious packages

Persistent Risk and Consumer
Complacency

In parallel, organizations continue to struggle with effi-

cient risk mitigation. This is why this year, we introduce

the concept of “Persistent Risk,” a combination of

unfixed and corrosive vulnerabilities that continues

to erode the security integrity of software over time. A

prime example of this is Log4j, where 13% of downloads

remain vulnerable three years after the Log4Shell vul-

nerability was exposed. While we’re extremely focused

on this rise in contaminated open source projects, or

malware, the reality is all open source or commercial soft-

ware will eventually have bugs that evolve into vulnera-

bilities; they age more like steel, not aluminum, becoming

rusty after extensive corrosion.

The prevalence of such risks underscores the compla-

cency that still defines much of the industry’s approach

to open source consumption.

• 80% of application dependencies remain un-upgraded

for over a year, even though 95% of these vulnerable

versions have safer alternatives readily available. It’s

not a matter of ‘if’ a breach will occur, but ‘when.’

• Only 0.5% of OSS components have no available

update (No Path Forward), meaning that nearly all risk

is preventable if organizations take proactive steps to

update their dependencies.

• Even when updates are applied, 3.6% of dependen-

cies are still vulnerable because they were updated to

another insecure version.

• Our analysis of over 20,000 enterprise applications

shows that reliance on EOL (end-of-life) components,

which no longer receive updates, leads to the gradual

breakdown of software integrity, strongly indicating

increased security vulnerabilities.

• Looking at discoverability revealed that, despite over

seven million open source components, only 10.5%

(about 762,000) are actively used. This disparity

highlights the noise developers face when selecting

components.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 3

EXECUTIVE SUMMARY

P E R S I ST E N T R I S K A N D C O N S U M E R C O M P L AC E N CY BY T H E N U M B E R S

3.6%
dependencies
are upgraded to
another insecure
version, so are still
vulnerable

ONLY 0.5%
OSS components
have no
available update.
NEARLY ALL RISK IS

PREVENTABLE

80%
application
dependencies
remain un-upgraded
for over a year

13%
Log4j downloads
remain vulnerable
3 years after
Log4shell
exposure

Despite advances in supply chain security practices,

consumer behavior lags, illustrating a critical failure in

consumption practices. To address these issues, orga-

nizations must embrace best practices like proactive

dependency management, choosing high-quality compo-

nents, and avoiding malware risks.

To better understand how to actually choose high-quality

components, we took a look at key heuristics - which

include active community engagement, projects publish-

ing Software Bills of Materials (SBOMs), and support from

recognized foundations. We notably found that projects

backed by recognized foundations have better security

practices and reduced vulnerabilities.

Efficiency and Waste:
The Time Drain on Developers

Efficiency in the development process is also at risk.

Managing open source risks requires optimizing security

policies and practices to keep up with the fast-paced evo-

lution of new OSS libraries. Organizations struggle with

the impracticality of slowing down DevOps processes

for manual vulnerability reviews, leading to frustration

among developers. Enterprises must aim to reduce waste

by optimizing their remediation effort with the best possi-

ble software composition analysis tool.

Through our analysis, we know:

• Size of application does not matter—with the average

applications containing 180 components, even small

applications face unmanageable workloads due to

increasing dependencies.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 4

EXECUTIVE SUMMARY

E F F I C I E N CY A N D WA ST E

BY T H E N U M B E R S

69%
vulnerabilities initially scored below
7 were corrected to 7 or higher on
the CVSS scale upon closer review

ONLY 10.5%
of open source components
are actively used out of over
7 million available

180
average number of components
per application | EVEN SMALL APPLICATIONS

FACE UNMANAGEABLE WORKLOADS

92%
crowdsourced or publicly available
data needed a correction once
reviewed by a security researcher

• Quality data does matter. 92% of crowdsourced or

publicly available vulnerability data needed a cor-

rection once reviewed in more detail by a security

researcher; 69% of vulnerabilities that were initially

scored below 7 on the CVSS scale were corrected to 7

or higher, creating what we’re calling surprise risk and

a false sense of comfort.

• Efficiency isn’t just about security, but about licenses:

while an open source project typically has an overarch-

ing license, individual files may have different licenses

as contributions grow, potentially impacting the project

downstream.

The current reactive approach to vulnerabilities and

license reviews wastes developer time, leading to ineffi-

ciency and higher costs. To combat this, enterprises need

effective software composition analysis tools that provide

high-quality component intelligence and integrate seam-

lessly into the development process.

A Call to Action and Vigilance:
Proactive Management, Continuous
Security, and Advanced Tooling

As attackers evolve their strategies to target the very

foundation of software supply chains, the responsibility

falls on software manufacturers, consumers, and regula-

tors to adopt robust security practices. We can stop the

bleeding and mitigate these mounting risks with proac-

tive dependency management, advanced tooling, and

earlier security intervention.

• Always-on security practices, when tools like Software

Composition Analysis (SCA) are integrated directly

into CI/CD pipelines, and throughout the development

process — this can reduce wasted developer time and

provide context for informed decision-making and get

ahead of this risk.

• Reducing Persistent Risk is possible by focusing on

tools that help manage dependencies and apply real-

time vulnerability detection. In fact, we found that proj-

ects using a Software Bill of Materials (SBOM) to man-

age OSS dependencies showed a 264-day reduction

in mean time to remediate (MTTR) compared to those

that did not .

By embedding these practices early and managing OSS

consumption more rigorously, organizations can cut

down on risks before they grow corrosive and costly.

Organizations must prioritize an advanced SCA tool helps

by selecting high-quality, well-maintained components,

addressing risks as early as possible, and remaining

vigilant against the evolving landscape of supply chain

attacks. This proactive approach not only reduces devel-

oper frustration but also cuts down on wasted resources.

Failure to do so leaves software ecosystems open to cata-

strophic breaches and operational inefficiencies.

The balance between innovation and security is more crit-

ical than ever. Open source ecosystems will continue to

fuel technological breakthroughs, but organizations must

evolve their security practices to avoid becoming victims

of their own success. By addressing complacency, adopt-

ing robust tooling, and staying vigilant, software manufac-

turers can mitigate the Persistent Risks that threaten the

future of innovation.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 5

EXECUTIVE SUMMARY

As we look back on 10 years of data collection
for the State of the Software Supply Chain,

it’s a good time to reflect on what has changed — and

what hasn’t. This retrospective examines four key dimen-

sions: attackers, publishers, consumers, and regulators.

A decade ago, the cultural landscape was vastly differ-

ent. Social media was just beginning to show its wide-

spread impact. Instagram had recently been acquired

by Facebook, while Snapchat rejected a multibillion-dol-

lar offer from the same giant. Smartphones were every-

where, but apps like TikTok, which would later reshape

digital culture, were still far out on the horizon.

In the tech world, cloud computing was maturing, but not

yet as integrated into daily life as it is today. Amazon Web

Services (AWS) was proliferating, but the full implications of

cloud-native development and the shift towards serverless

architectures were just beginning to be understood. Kuber-

netes, which has subsequently revolutionized container

orchestration and become a cornerstone of modern infra-

structure, was only recently open-sourced by Google.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 6

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 6

LOOK BACK: 10 YEARS OF SSCR

10 YEAR
LOOK BACK

72,065
SBOMS published by the end of 2023

463%
CVE Growth from 2013–2023

704,102
Malicious Packages Discovered, since
proactive identification began in 2019

1,466%
Growth in release frequency
between 2014–2023

Many of today’s tech staples were in their infancy. Zoom,

now key to remote work, was starting to gain traction, and

Slack had just launched, reshaping workplace commu-

nication. The Apple Watch and Amazon Echo were just

exciting rumors. Smart assistants in every home were still

a futuristic idea.

During this period, cybersecurity concerns, particularly

in the software supply chain, were gaining attention. The

Cyber Supply Chain Management and Transparency

Act of 2014, commonly known as the Royce Bill, high-

lighted the growing recognition of these risks.

One of its most forward-thinking provisions was the

Software Bill of Materials (SBOM) requirement — a com-

prehensive and confidentially supplied list of each binary

component within the software, firmware, or product.

Though the bill never became law, it’s worth considering

how aggressive software transparency a decade ago

could have led to a more secure ecosystem today. Had

the SBOM requirement been implemented back then,

we would have a much deeper understanding and con-

trol over the components that make up our digital infra-

structure today. In fact, we might have mitigated many

of the supply chain attacks and vulnerabilities that have

plagued the industry in recent years, setting a higher

standard for security and trust in software development

long before these issues reached the critical point they

now occupy.

This period also preceded the mainstream rise of AI.

While AI research was active, and companies like Google

and Facebook were investing heavily, public exposure

was limited to Netflix recommendations and early virtual

assistants like Siri and Alexa.

Attackers and the Evolution of
Software Supply Chain Exploits

Over the past decade, the software supply chain has

become a primary attack vector for malicious actors. What

was once a relatively niche method of attack has evolved

into one of the most significant cybersecurity threats today,

driven by the interconnectedness of modern software eco-

systems and the increasing reliance on open source com-

ponents. As software supply chains have grown in com-

plexity, so too have the strategies employed by attackers,

who have shifted their focus from directly targeting orga-

nizations to exploiting vulnerabilities within the broader

supply chain and all of its downstream consumers.

Early Years: Struts, Heartbleed,
and Shellshock (2014–2016)

In the mid-2010s, the software supply chain began attract-

ing more attention from attackers, exemplified by early inci-

dents like CVE-2014-0094, a remote code execution flaw

in Apache Struts that allowed attackers to execute arbitrary

code on servers running vulnerable framework versions.

Although this vulnerability didn’t gain the same notoriety

as later software supply chain incidents, it highlighted

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 7

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 7

LOOK BACK: 10 YEARS OF SSCR

An SBOM mandate when it was first suggested
10 years ago could have redefined software
security and stopped today’s supply chain
attacks before they began.

https://www.congress.gov/bill/113th-congress/house-bill/5793/text
https://www.congress.gov/bill/113th-congress/house-bill/5793/text
https://www.congress.gov/bill/113th-congress/house-bill/5793/text

the risks posed by unpatched open source components

that many organizations relied on for critical infrastruc-

ture. This issue came to a head in 2017 with the Equifax

breach, but the 2014 vulnerability served as an early

warning of the dangers of failing to manage the security

of widely-used software dependencies.

Around the same time, Heartbleed and Shellshock sent

shockwaves through the cybersecurity world. Heart-

bleed, a flaw in OpenSSL, exposed millions of servers to

data breaches, while Shellshock allowed remote code

execution on Unix-based systems. Both demonstrated

the vast attack surface of widely-used open source com-

ponents and emphasized the importance of securing the

software supply chain.

These early attacks revealed how vulnerabilities in core

open source software could ripple across industries,

underscoring the need for better patch management,

transparency, and proactive security measures.

2017: The Equifax Breach and the Rise
of Targeted Supply Chain attacks

The 2017 Equifax breach, caused by the failure to patch

a known Apache Struts vulnerability (not the 2014 vul-

nerability discussed above), marked a turning point for

software supply chain security. It showed how a sin-

gle unpatched flaw in a widely-used framework could

lead to a catastrophic breach, as attackers exploited

weaknesses in open source components to access criti-

cal systems and exfiltrate confidential information for mil-

lions of consumers. The incident was a wake-up call for

many organizations, illustrating the devastating effects of

not properly managing and securing your software sup-

ply chains, and bringing open source supply chain vulner-

abilities into nationwide headlines for the first time.

2017 marked another significant turning point as the

year when the first targeted attacks on the software sup-

ply chain began to emerge using open source malware.

Data from the Sonatype State of the Software Supply

Chain reports in 2017 and 2018 shows that this was the

period when attackers started to intentionally inject mali-

cious code into popular open source libraries, targeting

the very foundation of the software supply chain. These

early attacks were highly selective and designed to infect

specific projects with high adoption rates. For instance,

compromised versions of popular npm packages and

other open source components were downloaded by

developers, inadvertently spreading malware to down-

stream systems.

This shift from opportunistic to targeted exploitation

signaled a new era of supply chain attacks. Attackers rec-

ognized the strategic value of compromising software at

its source, potentially reaching thousands of users with a

single strike. This laid the groundwork for more sophisti-

cated and large-scale exploits in the years to come.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 8

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 8

LOOK BACK: 10 YEARS OF SSCR

This shift from opportunistic to
targeted exploitation signaled a
new era of supply chain attacks.

https://www.sonatype.com/hubfs/SSC/2017%20SSC/2017%20State%20of%20the%20Software%20Supply%20Chain%20Report.pdf
https://www.sonatype.com/hubfs/1-2023%20New%20Site%20Assets/Find%20a%20Partner%202023/2018%20State%20of%20the%20Software%20Supply%20Chain%20Report.pdf

Sadly, seven years later, in 2024, this is still one of the least

understood and recognized attack vectors by security

teams. The number of attacks detected in the software

supply chain doubled again in 2024, indicating that our

industry is mainly defenseless against these growing risks.

2020: SolarWinds and the Expansion
of Supply Chain Attacks
The SolarWinds attack in late 2020 further demonstrated

the growing sophistication of software supply chain

threats. In this highly coordinated operation, attackers

infiltrated SolarWinds’ build environment and embedded

malicious code (Sunburst) into software updates for the

company’s Orion platform, distributed to thousands of

government agencies and corporations worldwide. Solar-

Winds represented a new attack level, where adversaries

exploited vulnerabilities deep within the development

pipeline to compromise trusted software used by high-

value targets. This attack was a technical success and

underscored the strategic value of supply chain compro-

mises for espionage and broader cyber warfare — and

was the roadmap nation state attackers needed to recog-

nize how effective a software supply chain attack could

truly be.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 9

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 9

LOOK BACK: 10 YEARS OF SSCR

FIGURE 1.1

Next Generation Software Supply Chain Attacks (2019–2024)

Malicious OSS packages discovered (2019-2024).

2021–2022: Log4Shell, the Vulnerability
that Set the Internet on Fire

The discovery of the Log4Shell vulnerability in late 2021

marked another critical moment in the evolution of sup-

ply chain threats. A widely used open source logging

utility, Log4j was embedded in thousands of enterprise

applications and its critical vulnerability opened a mas-

sive attack surface. Attackers quickly capitalized on this

flaw, and, within hours of its public disclosure, began

launching widespread exploitation campaigns. Log4S-

hell demonstrated how vulnerabilities in a seemingly

obscure open source component could ripple through

the entire software ecosystem, impacting organizations

across industries.

It was only in the wake of Log4shell did the industry

become widely conscious of the impacts of the massive

growth of open source dependency consumption com-

bined with lack of mature controls — the very thing this

report has been evangelizing since 2014 which could

have been markedly impacted had the Royce bill passed

back then. This incident finally accelerated the urgency

around supply chain security, pushing governments and

organizations to adopt more stringent practices like Soft-

ware Bills of Materials (SBOMs) and continuous monitor-

ing of open source components.

2024: The Attempted XZ-Utils Supply
Chain Attack

In 2024, the attempted supply chain attack on XZ Utils,

a widely used compression library, marked a dangerous

escalation in open source software security. Unlike typi-

cal attacks, this sophisticated, likely nation-state-backed

operation followed the “benevolent stranger” playbook.

The attackers played a long game, leveraging social engi-

neering to gain trust within the project, which had been

maintained by a single developer for nearly two decades.

In 2022, pressure from suspected bogus accounts paved

the way for a new contributor, Jia Tan, who gradually

gained the maintainer’s trust.

Over two years, Jia introduced encrypted malicious code

into binary test files embedded in the XZ source code.

These files, common in compression packages, went unno-

ticed due to their subtle nature. The attackers were just days

away from having this compromised version ingested by

major Linux distributions, which would have allowed back-

doors to be deployed to countless systems globally.

The attack was thwarted only by chance, averting wide-

spread infiltration of Linux-based devices and enterprises

worldwide. This incident highlights the growing trend

of highly organized attackers targeting essential open

source projects, aiming for maximum disruption within

the global software ecosystem.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 10

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 10

LOOK BACK: 10 YEARS OF SSCR

https://www.sonatype.com/resources/log4j-vulnerability-resource-center
https://www.sonatype.com/blog/cve-2024-3094-the-targeted-backdoor-supply-chain-attack-against-xz-and-liblzma

Consumers of Open Source

Since we published the first State of the Software Supply

Chain Report, the profile of open source software con-

sumers has expanded significantly. It has evolved from

primarily being for developers and smaller organizations

to now being integral to organizations of all sizes, from

startups to large enterprises to government agencies

around the world.

The growing reliance on open source reflects confi-

dence in its flexibility and innovation, as well as its ability

to reduce time-to-market and development costs and

increase organizational agility. But it also brings new

risks, particularly with poor dependency management

and the rise of open source malware.

Nearly three years after the discovery of the Log4Shell

vulnerability, 13% of Log4j downloads are still for known

vulnerable versions. While this is an improvement, it

should be near zero based on the broad public aware-

ness of the vulnerability, signaling persistent issues with

dependency management. Additionally, our research in

both 2022 and 2023 found that 96% of vulnerable com-

ponents downloaded had a fixed, non-vulnerable version

available. In this year’s report, this figure only improved

slightly to 94.9%, highlighting poor consumption practices

aren’t really changing and organizations are bringing in

exponentially more risk by not paying attention.

Worse, our research clearly shows that poor dependency

management often pairs with other poor choices. Failure

to regularly update and oversee open source compo-

nents allows known vulnerabilities to persist, posing seri-

ous risks to the software supply chain.

Meanwhile, the threat of open source malware continues

to grow as attackers exploit gaps in poor consumption

practices. As mentioned above, the XZ Utils project take-

over demonstrated how widely used components, often

maintained by overworked and underfunded teams, can

become entry points for malicious code.

As open source consumption evolves, so must best

practices. Organizations must adopt rigorous practices,

improve dependency management, and address open

source malware risks to ensure the security and reliability

of software supply chains. For more details, see The Evo-

lution of Open Source Risk section in this year’s report.

Publishers of Open Source

Over the past decade, open source publishers (developers/

projects that are creating and then sharing components

via public registries like Maven Central) have shown a

remarkable transformation in their behavior, driven by both

increased demand and growing expectations for rapid

innovation. The data on release frequencies highlights key

trends in how projects are maintained and evolved.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 11

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 11

LOOK BACK: 10 YEARS OF SSCR

Poor consumption practices aren’t
really changing and organizations
are bringing in exponentially more
risk by not paying attention.

13%
of Log4j downloads are still for known
vulnerable versions, nearly 3 years after
the vulnerability’s discovery.

From 2010 through 2024, there has been a consistent

increase in the number of projects where release fre-

quency grew year-over-year. In particular, 2023 and

2024 saw massive growth, with over 1.8 million projects

increasing their release cadence in 2023 alone. This

surge reflects the accelerating pace of development

as publishers race to release new features, fix bugs,

and address security vulnerabilities to meet the grow-

ing demands of consumers and regulatory pressures.

However, this also introduces challenges related to sus-

tainability and stability, as smaller, independent projects

struggle to keep up with the pressure to update and

improve continuously.

Despite the overall increase, a significant number of

projects saw their release frequency decrease or remain

unchanged, particularly after 2020.

By 2024, over 300,000 projects had slowed or halted

their release cadence, indicating burnout, resource short-

ages, or shifting priorities among smaller publishers. This

shows that while some thrive in a fast-paced environment,

many struggle to maintain activity.

Interestingly, projects with stable release cadences have

steadily increased, though remain smaller in comparison.

These mature projects likely prioritize long-term mainte-

nance and reliability over rapid development, catering to

industries that require stable, well-tested software.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 12

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 12

LOOK BACK: 10 YEARS OF SSCR

FIGURE 1.2

Release Frequency of Open Source Projects

Projects that released faster, slower or the same as the prior year.

Mature projects likely prioritize long-term
maintenance and reliability over rapid
development, catering to industries that
require stable, well-tested software.

While projects are generally moving more quickly now

than they were a decade ago, the rate of vulnerability

remediation is slowing significantly.

The data showing how long it takes projects to update

their dependencies in response to disclosed vulnerabilities

reveals both progress and ongoing challenges in the open

source community. While the need for rapid responses to

vulnerabilities is well-understood, the actual time it takes

for publishers to update dependencies and release secure

versions has varied significantly over the years.

In 2017, the mean time to remediate vulnerabilities was rela-

tively short, with some fixes implemented in under 25 days.

However, by 2023 and 2024, delays had increased signifi-

cantly, with some projects taking over 400 days to release

secure updates. In 2024, several projects had average fix

times exceeding 300 days, with one reaching 470 days.

This trend highlights a growing lag in security response,

even as timely updates become more critical.

This pattern reflects a growing complexity in software

supply chains, where projects often rely on multiple lay-

ers of dependencies. As the interconnectedness of open

source projects increases, so do the challenges of main-

taining prompt security updates. Publishers, especially

smaller or less-resourced teams, may struggle to keep

up with the need for constant vigilance and fast releases.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 13

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 13

LOOK BACK: 10 YEARS OF SSCR

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 13

FIGURE 1.3

Rate of Vulnerability Remediation Over Time

How long a project took to remediate known vulnerabilities in their dependencies.

As the interconnectedness of
open source projects increase,
so do the challenges of maintaining
prompt security updates.

The increasing mean time to remediate vulnerabilities

points to the strain on publishers to manage their depen-

dency chains efficiently, despite the growing regulatory

and consumer expectations for faster responses.

This delay in addressing vulnerabilities has significant

implications for the overall security of the open source

ecosystem. As projects take longer to implement fixes,

the risk of exploitation by malicious actors increases,

creating a ripple effect across the software supply chain.

The slow pace of updates demonstrates the need for

more robust tooling, automation, and support for over-

whelmed open source maintainers.

If we break down the mean time to remediate into buckets

by vulnerability severity, we see some additional trends.

Over the past decade, the mean time to remediate

vulnerabilities has shown a troubling upward trend.

While critical vulnerabilities historically received the fast-

est attention, with average fix times between 200 and

250 days, the data from 2024 shows that even critical

issues are now taking significantly longer to address.

Some critical vulnerabilities in 2024 took over 500 days

to fix, indicating that the response times for the most

severe security issues are worsening as complexity in

the software supply chain increases.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 14

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 14

LOOK BACK: 10 YEARS OF SSCR

FIGURE 1.4

Release Frequency by Severity

How long projects took on average to remediate dependency vulnerabilities broken down by severity.

Some critical vulnerabilities in 2024 took over
500 days to fix, indicating that the response
times for the most severe security issues are
worsening as complexity in the software supply
chain increases.

For high-severity vulnerabilities, the pattern is similar. Ear-

lier in the decade, the average fix times ranged between

150 and 300 days, but in recent years, these have

extended beyond 400 days. This growing lag poses a

substantial risk to organizations that rely on open source

components, as longer fix times create larger windows of

exposure for potential exploits.

The most alarming aspect of the data is the spike in fix

times for medium- and low-severity vulnerabilities, where

we see the clearest indication that publisher capacity

has been exceeded. Low-severity vulnerabilities, which

previously took 300-400 days to fix, are now seeing

delays of 500-700 days or more, with some stretch-

ing out nearly 800 days in 2024. This sharp increase

suggests that publishers are overwhelmed, struggling

to keep up with both the volume of security issues

and the ongoing demands of innovation and feature

development. The backlog of unresolved low-severity

vulnerabilities could lead to greater security risks as

these issues accumulate over time.

When we look at the growth of CVE reports over the last

decade, it shines a light on why publishers are struggling

to keep up.

The massive uptrend beginning in 2016 directly correlates

to the increased MTTR seen in the previous analysis.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 15

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 15

LOOK BACK: 10 YEARS OF SSCR

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 15

Publishers are overwhelmed, struggling to
keep up with both the volume of security issues
and the ongoing demands of innovation and
feature development.

FIGURE 1.5

Yearly Growth of CVEs, 1999–2023

Vulnerabilities published year over year.

Overall, the data highlights that the software supply chain

has reached a critical point where publisher resources

cannot keep pace with the rising volume of vulnerabili-

ties. Without improved automation, tooling, and support

for maintainers, the delays in addressing vulnerabilities

will continue to increase, leaving organizations exposed

to many security risks.

SBOM Production by Open
Source Projects

Following the publication of two new SBOM standards,

CycloneDX and SPDX v3, and guided by global gov-

ernment regulations requiring or heavily encouraging

SBOMs, we have seen some progress in the number of

projects publishing SBOMs alongside their components.

Initiatives like the U.S. Executive Order 14028 have

driven increased awareness of SBOMs across the indus-

try, and as a result, we’ve seen open source projects

begin to create SBOMs. However, we are still seeing

essentially linear growth. In the early days of March 2022,

we saw about 68 new SBOMs published per day. More

than two years later in June of 2024, we are seeing a little

over 200 per day (inconsistently).

While this 3x growth is encouraging,
if we compare it to the overall growth
in new components in the same time
period, the view is much darker.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 16

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 16

LOOK BACK: 10 YEARS OF SSCR

FIGURE 1.6

Cumulative SBOM Publishing Counts

How many components were published with SBOMs.

https://www.gsa.gov/technology/it-contract-vehicles-and-purchasing-programs/information-technology-category/it-security/executive-order-14028#:~:text=Summary%20of%20EO%2014028%20requirements&text=Establishes%20baseline%20security%20standards%20for,making%20security%20data%20publicly%20available.

Although the number of published SBOMs is increasing,

it is far outpaced by the growth rate of new components.

This disparity suggests that while SBOM adoption is

growing, it has not yet reached a point where it matches

the pace of component releases. This needs to change.

As more regulations and security practices mandate

transparency and traceability through SBOMs, particu-

larly for open source projects that form the backbone of

modern software, ecosystems must keep pace.

We don’t want to ignore the progress, but the software

industry has significant work to do to embrace compre-

hensive software transparency.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 17

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 17

LOOK BACK: 10 YEARS OF SSCR

FIGURE 1.7

Cumulative SBOM Publishing Counts vs Cumulative Published Components

Comparing the growth of components with SBOMs vs the overall total shows we are not even beginning to keep up.

D I S PA R I T Y I N S O F T WA R E

T R A N S PA R E N CY & T R AC E A B I L I T Y

60,813

6,971,092
Components published

in the last 12 months

V S

SBOMs published
in the last 12 months

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 18

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 18

A Decade of Software Regulations

Regulators of Open Source

Over the past decade, regulation of open source soft-

ware has evolved significantly, driven by the increasing

recognition of its critical role in the global software supply

chain. A hands-off approach in the early 2010s has given

way to more proactive regulatory frameworks, aimed at

addressing the growing cybersecurity risks associated

with software supply chains. Below is a listing of some of

the most impactful recent regulations and their effects on

the software supply chain:

2014:
The Cyber Supply Chain Management and Transparency

Act 2014 (Royce Bill) was an important early milestone.

While the Royce Bill ultimately didn’t become law, it

called for a Software Bill of Materials (SBOM), now a

cornerstone of modern supply chain security efforts.

The Bill’s vision, requiring organizations to maintain

a comprehensive, confidential list of software com-

ponents, stood in stark contrast to the industry’s slow

pace of embracing this level of transparency, and it

would take nearly a decade for policy to catch up to

this forward-thinking proposal.

2018:
The European Union General Data Protection Regulation

(GDPR) introduced stringent data protection requirements,

indirectly affecting the software supply chain by imposing

heavy fines for non compliance with data handling prac-

tices. It has forced organizations to scrutinize the open

source components they use, ensuring that they meet the

necessary data protection standards, thereby influencing

how software is developed and maintained.

2020:
The California Consumer Privacy Act (CCPA) is sim-

ilar to GDPR, with heightened awareness around data

privacy, pushing organizations to be more transparent

about how they manage data within their software supply

chains. This regulation has led to increased demand for

tools and practices that ensure compliance at every level

of software development, including the use of third-party

open source components.

2020:
Cybersecurity Maturity Model Certification (CMMC),

implemented by the U.S. Department of Defense, has set

new cybersecurity standards for defense contractors,

requiring them to demonstrate a certain level of cyber-

security maturity, including the management of software

supply chains. This has led to more rigorous vetting and

monitoring of open source components used in defense-

related software, setting a precedent for other sectors.

2021:
U.S. Executive Order 14028 on Improving the Nation’s

Cybersecurity directly addressed the need for greater

security within the software supply chain, emphasizing the

importance of SBOMs. It has accelerated the adoption of

SBOMs across industries, providing transparency into the

components used in software and helping to identify and

mitigate vulnerabilities more effectively.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 19

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 19

LOOK BACK: 10 YEARS OF SSCR

It would take nearly a decade for
policy to catch up to the forward-
thinking proposals put forth in the
Cyber Supply Chain Management
and Transparency Act of 2014.

https://www.congress.gov/bill/113th-congress/house-bill/5793
https://www.congress.gov/bill/113th-congress/house-bill/5793
https://gdpr.eu/
https://oag.ca.gov/privacy/ccpa
https://dodcio.defense.gov/CMMC/About/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

2021:
The BSI Update aligns closely with the EU’s Cyber Resil-

iency Act. The update expands the regulatory powers

of the Federal Office for Information Security (BSI) and

strengthens cybersecurity requirements for critical infra-

structure sectors, including energy, healthcare, and finan-

cial services. The law also mandates stronger security mea-

sures and reporting obligations for digital service providers.

2021:
The European Union Agency for Cybersecurity (ENISA)

highlighted software supply chain attacks as a growing

threat, especially in the context of critical infrastructure.

Their threat landscape report outlines key risks posed by

supply chain vulnerabilities, recommending that organi-

zations enhance security across their entire software sup-

ply chain. The report emphasizes collaboration between

industry and government to strengthen the security of

open source software and third-party components.

2023:
The Network and Information Systems Directive (NIS2

Directive) is the EU’s updated framework to improve cyber-

security across member states. It expands the scope of

organizations required to comply with cybersecurity stan-

dards and imposes stricter obligations on managing risks,

including those within software supply chains. The directive

has pressured organizations to adopt more robust security

practices, particularly concerning the use of open source

software in critical infrastructure.

2023:
The Digital Operational Resilience Act (DORA) is applica-

ble to financial institutions within the EU. DORA mandates

stringent requirements for the security of digital systems,

including the software supply chain. It has forced financial

institutions to take a closer look at the security of open

source components, driving better practices in vetting, man-

aging, and updating these components to avoid disruptions.

2023:
The US Cybersecurity and Infrastructure Security Agen-

cy’s Secure by Design framework encourages software

manufacturers to integrate security measures from the

earliest stages of development to ensure products are

inherently secure when released. The goal is to shift the

cybersecurity burden from consumers to software suppli-

ers, promoting a more resilient digital ecosystem.

2023:
Self-attestation for secure software development prac-

tices, including adherence to the NIST Secure Software

Development Framework (SSDF), was adopted following

Executive Order 14028, issued in May 2021. This executive

order directed federal agencies to require software pro-

viders to self-attest that they are following secure develop-

ment practices, including those outlined in the SSDF.

2023:
The CISA Cybersecurity Strategic Plan for FY2024-2026

focuses on enhancing U.S. cybersecurity by improving

threat detection and mitigation, securing critical infrastruc-

ture, and fostering strong partnerships. The plan emphasizes

building a resilient cyber workforce, increasing collaboration

between public, private, and international partners, and

addressing emerging technologies like quantum computing.

It also prioritizes hardening networks and driving security

through information sharing and secure-by-design technol-

ogy. Overall, the strategy reflects a whole-of-government

approach aimed at strengthening national cyber defense.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 20

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 20

LOOK BACK: 10 YEARS OF SSCR

The Secure by Design framework
encourages software manufacturers to
integrate security measures from the earliest
stages of development to ensure products
are inherently secure when released.

https://www.bsi.bund.de/EN/Home/home_node.html
https://www.enisa.europa.eu/topics/cyber-threats/threats-and-trends
https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2021)689333
https://www.eiopa.europa.eu/digital-operational-resilience-act-dora_en
https://www.cisa.gov/resources-tools/resources/secure-by-design
https://www.cisa.gov/secure-software-attestation-form
https://www.cisa.gov/sites/default/files/2023-08/FY2024-2026_Cybersecurity_Strategic_Plan.pdf

2023:
The Draft Law on Security through Integrated Economic

Measures from Japan is aimed at ensuring national secu-

rity through integrated economic measures, particularly

in sectors deemed security-sensitive, such as energy,

water, IT, finance, and transportation. The law places a

narrow focus on the procurement of overseas software,

aiming to safeguard critical infrastructure by preventing

the use of software that may pose security risks to these

vital sectors.

2024:
The Cyber Resilience Act (CRA), recently adopted in

the EU, is designed to ensure that products with digital

elements are developed with cybersecurity in mind. It

imposes strict security requirements on manufacturers,

including those using open source components. The

CRA’s focus on the entire product lifecycle — from devel-

opment to decommissioning — means that open source

software must be scrutinized, not just for its initial secu-

rity but also for how it will be maintained and updated

over time. This regulation is expected to drive significant

change in how open source projects are managed and

maintained, particularly in high-risk industries.

2024/2025:
The updated Product Liability Directive (PLD) in the EU

extends liability to software products, including those

incorporating open source components. This change

means that organizations can be held liable for damages

caused by defective software, placing new pressures on

companies to ensure the security and reliability of the

open source software they use. The PLD is likely to lead

to more rigorous testing and certification processes for

open source components as companies seek to mitigate

the risk of liability.

2025:
The Association of Southeast Asian Nations (ASEAN)

is working toward establishing a unified cybersecurity

regulatory framework by 2025. This effort aims to create

common cybersecurity standards across the ten ASEAN

member states, addressing the increasing cyber threats in

the region. The regulations will focus on securing critical

infrastructure, improving information sharing, and fostering

international cooperation in the face of rising cyber risks.

Navigating the Future of Open Source
and Software Supply Chain Security

As we reflect on the past decade, the evolution of soft-

ware supply chain security has been shaped by a grow-

ing recognition of the critical role open source software

plays in global digital infrastructure. The challenges

posed by vulnerabilities in widely used components, like

Apache Struts, Heartbleed, and Log4Shell, have illumi-

nated the fragility of our interconnected systems. These

incidents underscored the need for increased transpar-

ency, accountability, and better security practices across

the entire software development lifecycle.

While the early 2010s saw isolated incidents and slow reg-

ulatory responses, the emergence of frameworks like the

Cyber Supply Chain Management and Transparency Act

of 2014 (Royce Bill) introduced forward-thinking concepts

like SBOMs. Although it did not become law, the bill’s

vision laid the groundwork for today’s regulatory efforts.

The 2020s have witnessed
a surge in regulatory action
aimed at addressing software
supply chain risks.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 21

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 21

LOOK BACK: 10 YEARS OF SSCR

https://www.japaneselawtranslation.go.jp/en/laws/view/4523/en#:~:text=Article%201The%20Purpose%20of,of%20systems%20regarding%20the%20stable
https://www.japaneselawtranslation.go.jp/en/laws/view/4523/en#:~:text=Article%201The%20Purpose%20of,of%20systems%20regarding%20the%20stable
https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
https://www.europarl.europa.eu/doceo/document/TA-9-2024-0132_EN.html
https://asean.org/our-communities/asean-political-security-community/peaceful-secure-and-stable-region/cyber-security/

It took nearly a decade for policy to align with the

vision of software transparency proposed in the Royce

Bill, as seen in recent regulations like Executive Order

14028, which has accelerated the adoption of SBOMs

across industries.

The 2020s witnessed a surge in regulatory action aimed

at addressing software supply chain risks. Regulations

like the Cyber Resilience Act (CRA) and the Product Lia-

bility Directive (PLD) from the European Union signal a

new era of accountability, where the security and reliabil-

ity of open source components are no longer optional but

essential. These efforts highlight the growing expectation

that organizations adopt robust practices for managing

the security of their software supply chains.

However, as highlighted by the data, challenges remain.

A striking 95% of the time, when vulnerable components

are consumed, a fixed version already exists. This trend

has persisted over the last three years, showing little

improvement. Despite the availability of patched ver-

sions, consumers continue to make poor choices when

selecting dependencies. This behavior underscores the

need for stronger security awareness, education, and

enforcement mechanisms across organizations.

The rise in mean time to remediate vulnerabilities, partic-

ularly for low- and medium-severity issues, suggests that

publisher capacity is being stretched beyond its limits.

Even as the number of SBOMs grows, it has not kept

pace with the explosion of new components. This gap

signals the need for better automation, tooling, and sup-

port for open source maintainers to ensure vulnerabilities

are addressed more quickly.

The future of the software supply chain will depend on

our ability to meet these challenges head-on. As regula-

tions continue to evolve and attackers grow more sophis-

ticated, organizations must embrace comprehensive

security measures and foster collaboration across the

industry. Only by building a foundation of transparency,

accountability, and proactive security can we ensure that

the open source ecosystem remains both vibrant and

secure for the decade ahead.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 22

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 22

LOOK BACK: 10 YEARS OF SSCR

95%
of the time, when vulnerable components
are consumed, a fixed version already exists.

The growth of open source is a signal for innovation within the software industry. You can

observe new waves of technology being invented and adopted by measuring it.

With this growth, the engineers and innovators at large gain access to a source of innovation that is world-class and

can in turn innovate faster.

The scale of open source is something that is hard to grasp intuitively and relate to a human scale, yet has a tremendous

influence on how we innovate via software. At-scale effects may be unanticipated in nature and as usage grows ever

wider, new risks and rewards emerge for its maintainers, users and the ecosystems they serve.

In this year’s report, we are taking a 10-year perspective on all measures. What is clear is that open source adoption

has reached a multi-trillion request scale and shows no signs of slowing down. Over the decade, new challenges

have appeared on the ecosystem scale that we will deep dive into. All our data is sourced from public sources and

was collected in July 2024.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 23

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 23

SCALE OF OPEN SOURCE

SCALE
of Open Source

704,102 Malicious open source
packages discovered
by Sonatype since 2019

Open Source Supply Balloons
Due to Malicious Actors

The supply side of open source is an interesting metric

to gauge the pace and scale of innovation that occurs in

a given ecosystem. The more open source projects are

published every year, the more innovation occurs in a

given ecosystem.

This year however, we observe both an unusual expan-

sion effect in one ecosystem in particular, which was not

organic in nature. This new kind of problem — packages

intended to spam an ecosystem — shows that open eco-

systems are liable to abuse. In this case, the act of pub-

lishing garbage also results in consumption that can be

measured at scale.

Over recent years, npm has experienced a groundswell

of new projects being published — not all of which have

good intentions. Increasingly, the ecosystem has been

a subject of malicious packages of various description

as well as spam of various types, including packages

aiming to redeem crypto rewards, packages aimed at

publishing content via unorthodox means and others.

Many ecosystems have faced challenges coping with this

type of increase — PyPI famously paused accepting new

releases due to a deluge of malicious releases.

Not all growth is organic. We’ve
seen an unusual uptick in packages
intended to spam — open ecosystems
are liable to abuse.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 24

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 24

SCALE OF OPEN SOURCE

FIGURE 2.1

Open Source Adoption as Projected for 2024

Ecosystem
Total

Projects
Total Project

Versions

2023 Annual
Request Volume

Estimate
YoY Project

Growth
YoY Download

Growth Estimate

Avg Versions
Released

per Project

Java
(Maven Central)

671k 18.7M 1.5T 7% 36% 28

JavaScript
(npm)

4.8M 48.8M 4.5T 23% 70% 10

Python
(PyPI)

635k 6.6M 530B 10% 31% 10

.NET
(NuGet Gallery)

664k 10.5M 159B 6% 14% 16

Totals / Avgs 3.9M 60M 6.689T 29% 52% 16

2024 Software Supply chain statistics. Figures estimated using Linear regression based on downloads to July 2024.

It’s also clear Microsoft-stewarded ecosystems (npm and

NuGet) have gone through clean up operations due to

large volumes of malware and spam being published into

the ecosystem, as is evident from concurrent and identi-

cal drops in project growth rates.

Between 2023 and 2024, the number of available open

source projects grew an average of 11%. The average

open source project in 2023 released 16 versions avail-

able for consumption, with specific ecosystem averages

ranging from 10 to 28.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 25

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 25

SCALE OF OPEN SOURCE

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 25

FIGURE 2.2

Open Source New Project Growth Rate Over the Past 9 Years

Open source new project growth rate over the past 9 years. 2024 data to date in July 2024.

FIGURE 2.3

Open Source Projects and Versions Growth

Open source projects and versions growth.

Open Source Consumption
Rockets Through npm

This year will see the largest single annual consumption

increase we have on record — the estimated volume of

open source packages the world will download by the

end of the year will sit by our estimates at 6.6 Trillion

requests. This above baseline growth can be attributed to

two things: spam and AI.

Broken down by ecosystem, it’s clear to see that npm is

the largest contributor to this growth spurt, somewhat

distorted by the malware spam observed this year,

followed by PyPI and Maven Central. npm has undergone

the second largest request growth since 2020, which is

an incredible increase in volume served, given the scale

of the ecosystem.

This growth is not entirely organic but, as noted, is likely

caused by a deluge of spam packages published into

open source registries. The below figure shows the yearly

download view where this trend is clearly visible in npm.

This anomaly might be causing issues with our linear

regression and could lead to inflated estimates.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 26

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 26

SCALE OF OPEN SOURCE

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 26

FIGURE 2.4

Cumulative Estimated Requests per Ecosystem
FIGURE 2.5

Yearly Downloads per Ecosystem

Cumulative estimated requests per ecosystem over 7 years. Yearly downloads per ecosystem.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 27

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 27

Python (PyPI)

JavaScript (npm)

.NET (NuGet Gallery)

Java (Maven Central)

2024 Ecosystems by the Numbers

36%
YoY growth
estimated*

7%
project

growth rate

28
avg. versions

per project

87%
YoY request growth

10%
project growth rate

70%
YoY request growth

23%
project growth rate

* increase compared to 2023

14%
YoY request growth

6%
project growth rate

159
Billion packages
projected request volume

1.5
Trillion packages
estimated request volume

4.5
Trillion packages
projected download volume

537
Billion packages
projected download volume

Individual Ecosystem Analysis

Java (Maven)
Through the first 7 months of 2024, 828 billion Java com-

ponents were requested from the Maven Central Repos-

itory. This continues the strong average request growth

seen and is due to continue towards the second half of

the year, with linear regression forecasting the ecosystem

possibly reaching nearly 1.5 trillion requests served.

Maven Central is one of the oldest open source ecosys-

tems tracked, which can be seen from the amount of

versions each project has published — an average of 28.

This is 75% more than the average across all ecosystems.

.NET (NuGet)
NuGet is the chosen ecosystem of the .NET family of lan-

guages and continues to serve engineers working with

the growing set of Microsoft technologies. The rate of

growth has slowed down significantly in terms of down-

load requests. This is not entirely unsurprising given the

integrated nature of the .NET language core library.

JavaScript (npm)
npm continues to be the titan of the open source eco-

systems when it comes to requests served, undergoing

a significant growth spurt this year which is a significant

anomaly from the usual pattern we observe. We can’t

underscore enough that we believe this is because, in

2023, npm was riddled with a deluge of components

that could be classed as spam, all aiming to get payouts

using the Tea.xyz crypto protocol. This has inflated their

numbers and shows up in the massive uptick of request

volume. Similarly project counts are distorted due to this

spam. Although not unique to npm, the virtue of a low bar

to publish and a high degree of adoption makes it the

perfect target for such activity.

To say npm supports a titanic volume would be an

understatement. We estimate the ecosystem to serve

well over 4.4 trillion requests by the end of 2024 —

more than the entire volume of requests across all

4 monitored ecosystems in 2023.

Python (PyPI)
Python is the fastest grower in both project creation

and request volume. It continues to be fueled by the

AI and cloud adoption boom as a favored language in

both domains.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 28

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 28

SCALE OF OPEN SOURCE

Differentiating Software Vulnerabilities
and Open Source Malware

To understand the risks in the software supply chain, it’s

important to clarify the difference between Open Source

Malware and Vulnerabilities. While the two concepts are

related, they are completely different in terms of the type

of risk they introduce into your organization, as well as the

type of response that is required to mitigate said risk.

Software Vulnerability: A Flaw in the Code
A software vulnerability is akin to a flaw in code, much like

a faulty lock on a door. Unlike malware, vulnerabilities are

not intentional. Instead, they represent weaknesses in

software components or projects.

Similar to how a faulty lock compromises the security of

a building by allowing unauthorized access, a software

vulnerability creates a gap in the software’s security

perimeter. This gap becomes an entry point for intruders

to exploit, gaining unapproved access to the system,

application, or component.

Malware: Malicious Intent in Open Source
Malware, short for “malicious software,” poses a sig-

nificant threat to open source software ecosystems. It

encompasses a wide range of malicious programs, such

as viruses, worms, trojans, ransomware, spyware, and

adware, all designed to gain unauthorized access to infor-

mation or systems. In the software supply chain, malware

is most often passed off as legitimate open source com-

ponents or introduced to previously legitimate projects

via takeovers.

With its various forms, malware’s primary purpose is to

steal data, install harmful software, gain control of a net-

work, or compromise software or hardware. Threat actors

employ diverse distribution methods, such as infected

email attachments, malicious websites, or compromised

software downloads.

Malware in the software supply chain is designed to tar-

get developer environments, like continuous integration

systems and are commonly seen in ransomware attacks

and sophisticated breaches. The only known cure is

prevention and avoidance.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 29

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 29

SCALE OF OPEN SOURCE

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 29

D E F I N I I T I O N S : S O F T WA R E V U L N E R A B I L I T Y V S . M A LWA R E

A software vulnerability
creates a gap in the software’s security

perimeter, similar to how a faulty lock

compromises the security of a building by

allowing unauthorized access.

Malware’s primary purpose

is to steal data, install harmful software,

gain control of a network, or compromise

software or hardware.

Vulnerabilities in the
Open Source Ecosystem

Security vulnerabilities are a fact of life — as technology

evolves and ages, it also requires maintenance. New issues

are discovered at a rate over time, and thus it’s important to

acknowledge that vulnerabilities appear all the time. A good

analogy is to think software components age like milk, not

fine wine (or a new analogy you’ll see when we talk more

about risk, it’s more like steel than aluminum) — they don’t

get better with age. They might be good for a long time, but

when a vulnerability is discovered, it’s akin to spoiled milk —

something that needs to be discarded quickly.

The challenge, of course, is the scale of new security

vulnerabilities being discovered in the different ecosys-

tems, as well as the scale of issues being discovered in

the software you manage.

Organizational Challenges
A few fundamental facts — last year we reported that the

average Java application has about 150 open source

components when counting both direct and transitive

dependencies. On average, an application has 13 Critical or

High severity security vulnerabilities being discovered each

year. Depending on the size of the organization, the effort

to remediate issues can vary wildly, from a few minutes to a

few days, depending on the breaking changes needed to

go from the current version to the non-vulnerable one.

Another challenge is the source of information about

security vulnerabilities itself — in 2024, it has become evi-

dent that relying on free sources of information is almost

considered neglectful for any organization not specializ-

ing in intelligence aggregation.

For example, the National Vulnerability Database, the

canonical catalog of known security vulnerabilities via the

Common Vulnerability Enumeration System (“CVE”), had

an outage early 2024 that caused a massive backlog of

vulnerabilities being published. At the time of writing, this

backlog of published vulnerabilities sits at 17,656 unpro-

cessed issues. This meant that in Q1 of this year, nearly no

new security issues were made available to the community.

The volume of security vulnerabilities discovered is

growing in linear ratio with the growth rate of open

source being invented and published. This is to be

expected and is uncomfortable news for organizations

seeking to manage them.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 30

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 30

SCALE OF OPEN SOURCE

NATIONAL VULNERABILITY
DATABASE BACKLOG

17,656
The backlog of published but unprocessed

vulnerabilities at the National Vulnerability

Database, at the time of writing.

13
The average number of Critical or High
severity security vulnerabilities being
discovered each year, per application.

Open Source Malware & Next
Gen Supply Chain Attacks are Now
Commonplace, Dangerous Business

The growth of downloads hides a disturbing fact — the

continued extreme growth of malware, protestware,

and intentionally hidden vulnerabilities passed on to the

users. These types of packages are published not due

to carelessness, but with purely malicious intent. Using

open source as a medium of transport for malware isn’t

new. However, traditional scanning tools struggle to iden-

tify novel attacks, like we now see with malicious pack-

ages, otherwise known as open source malware. These

tools, while effective on known malware, are incapable of

finding malware that has not yet been identified.

Some have noble intentions, such as packages that pro-

test wars around the world, while some hide extremely

sinister motivations, including serious malware families

and ransomware gangs that sell off their victims to the

highest bidder. Every single one of them targets an often

undefended prey: developers and automated build

environments.

A great example of a successful malicious campaign tar-

geting developers is the Snowflake breach of 2024, where

developers were specifically targeted with malware fami-

lies that stole Snowflake authorization tokens. These were

later used to breach over 160 organizations.

In our YOY monitoring, at the time of writing in August

2024, we have logged 704,102 malicious open source

packages — meaning in the last year, we’ve seen the

number of malicious packages grow by 156% YOY. More

troublingly, we observe via an anonymous survey con-

ducted on more than 100k repositories that over 50% of

unprotected instances surveyed have already fallen vic-

tim and cached a piece of malware.

A sobering finding in this year’s data is that more than

512k new pieces of malware have been introduced to the

public binary repositories, with 65K of them being CVSS

>= 7 since November 2023. All of these represent yet

another facet of Persistent Risk (read more about this in

our Risk chapter), and bring a total data set of more than

700k identified, malicious open source components.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 31

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 31

SCALE OF OPEN SOURCE

Next generation software supply chain attacks (2019-2024).

FIGURE 2.6

Next Generation Software Supply Chain Attacks (2019–2024)

Malware Types

As with ‘traditional’ malware, malware disguised as open

source comes in many guises and types. What is not tra-

ditional with open source malware is that it is executed

entirely without developer interaction. Once the package

is downloaded on the developers or build automation

machine it is too late to avert disaster.

Potentially Unwanted Application - 46.4%
A majority of the malware we observe being spread in

the open source ecosystem is what we call “Potentially

Unwanted Application” or PUA, which represents func-

tionality that is present in the software but not disclosed

to the end user. Examples of this include protestware,

anti-work protests, and other uninvited functionalities.

Though mostly innocent in practice, they represent a lack

of process in getting packages and act as evidence of a

hole in an organization’s open source defense.

Phishing - 13.8%
These types of packages leverage attack methods such

as dependency confusion to target organizations directly,

pretending to be an internally developed package. They

trick an organization’s build automation into downloading

them and often drop malware as they are downloaded.

Data Exfiltration - 13.7%
Data exfiltration packages read a number of pieces of

data found on the machine, such as environmental vari-

ables, authentication tokens, password files and anything

that might aid the assailant. Once collected, these files

are uploaded to an external command and control server

for future use.

Security Holding Package - 12.7%
These are packages that were found to be malicious, but

got removed by the maintainers of the ecosystem and

replaced by a holding package. Requires swift actions of

the upstream maintainers to avert disaster.

PII Exfiltration - 2.8%
A form of data exfiltration that targets Personally Identifiable

Information like personal access tokens and information.

Backdoor - 1.9%
A package that installs a backdoor virus onto the machine

that executes it. This backdoor will allow the attacker to

access the tainted machine at a later date.

Crypto Stealer / Miner - 1.2%
These types of packages aim to make money fast by

stealing any available cryptocurrency housed on the

affected machine. This category also includes pack-

ages that drop a crypto miner that hijacks the machine’s

resources to mine cryptocurrency for the hacker’s benefit.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 32

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 32

SCALE OF OPEN SOURCE

Malware types observed.

FIGURE 2.7

Malware Types Observed

Research Project - 1.2%
Some malware is simply a research project, either by a

researcher or a whitehat hacker that contains malicious

code but typically does not go so far as to breach the

machine or steal information. They are often seen during

penetration tests.

Dropper - 0.7%
As the name suggests, these types of packages drop

an encrypted payload onto the affected machine, often

a Remote Access Trojan that disappears from sight and

allows hackers to return at a later date.

Other types of malicious packages - 6.8%
The rest of the malicious packages discovered range from

destructive ones aiming to corrupt the file system they

launch on, to aiming to affect the code that a developer

writes, often seen disguised as IDE or CI plugins.

Traditional malware scanning solutions are unable to

detect these novel forms of attack, leading developers

and DevOps environments to be uniquely at risk. As the

volume continues to grow so too will the clear and present

danger facing organizations.

A T I M E L I N E O F AT TAC KS

We have continued to curate a timeline of known malicious packages and malware campaigns. This interactive

timeline summarizes notable supply chain incidents, next-gen attacks and other incidents propagated using the

software supply chain.

SEE THE FULL TIMELINE

PyPI crypto-stealer

targets Windows

users, revives

malware campaign

Russia-linked

‘Lumma’ crypto

stealer now targets

Python devs

Polyfill.io supply

chain attack hits

100,000+ websites

Npm packages

conceal macOS

malware in ‘travis.

yml’ files, drop

bogus “Safari

Updates”

Ideal typosquat

‘solana-py’ steals

your crypto wallet

keys

May June June July August

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 33

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 33

SCALE OF OPEN SOURCE

https://www.sonatype.com/blog/crytic-compilers-typosquats-known-crypto-library-drops-windows-trojan
https://www.sonatype.com/blog/crytic-compilers-typosquats-known-crypto-library-drops-windows-trojan
https://www.sonatype.com/blog/crytic-compilers-typosquats-known-crypto-library-drops-windows-trojan
https://www.sonatype.com/blog/crytic-compilers-typosquats-known-crypto-library-drops-windows-trojan
https://www.sonatype.com/blog/polyfill.io-supply-chain-attack-hits-100000-websites-all-you-need-to-know
https://www.sonatype.com/blog/polyfill.io-supply-chain-attack-hits-100000-websites-all-you-need-to-know
https://www.sonatype.com/blog/polyfill.io-supply-chain-attack-hits-100000-websites-all-you-need-to-know
https://www.sonatype.com/blog/npm-packages-use-travis.yml-files-to-conceal-macos-malware-disguised-as-safari-updates
https://www.sonatype.com/blog/npm-packages-use-travis.yml-files-to-conceal-macos-malware-disguised-as-safari-updates
https://www.sonatype.com/blog/npm-packages-use-travis.yml-files-to-conceal-macos-malware-disguised-as-safari-updates
https://www.sonatype.com/blog/npm-packages-use-travis.yml-files-to-conceal-macos-malware-disguised-as-safari-updates
https://www.sonatype.com/blog/npm-packages-use-travis.yml-files-to-conceal-macos-malware-disguised-as-safari-updates
https://www.sonatype.com/blog/npm-packages-use-travis.yml-files-to-conceal-macos-malware-disguised-as-safari-updates
https://www.sonatype.com/blog/an-ideal-pypi-typosquat-solana-py-is-here-to-steal-your-crypto-keys
https://www.sonatype.com/blog/an-ideal-pypi-typosquat-solana-py-is-here-to-steal-your-crypto-keys
https://www.sonatype.com/blog/an-ideal-pypi-typosquat-solana-py-is-here-to-steal-your-crypto-keys
https://www.sonatype.com/blog/an-ideal-pypi-typosquat-solana-py-is-here-to-steal-your-crypto-keys

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 34

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 34

Notable Malicious Packages

As we continue to document an overall rise in malicious attacks on open source ecosystems,

the monitored 2023–2034 period has also seen more professional criminal campaigns

emerge. The software supply chain lends itself well to the cybercriminal ecosystem — either

as an initial access vector to Initial Access brokers or even as a means of distributing initial

access malware for Advanced Persistent Threat groups.

LU M M A M A LWA R E F O U N D I N PY P I PAC K AG E
In the summer of 2024, packages published in the PyPI ecosystem were found to distribute the LUMMA

malware upon install. This malware family is linked to Russian state-affiliated hacking groups and was

reported to be a part of the information stealers used to execute the Snowflake breach of 2024.

READ OUR DEEP DIVE

T E A . X Y Z S PA M F LO O D S N P M
Throughout the course of the summer of 2024, npmjs.org was flooded under a deluge of malicious

packages that intended to game a well-intentioned crypto rewards scheme called Tea. It was originally

intended as a rewards scheme to compensate developers for contributing to open source.

READ OUR ANALYSIS

X Z PAC K AG E H E I ST N E A R LY C O M P R O M I S E S T H E
W O R L D ’ S S E RV E R S W I T H A B AC K D O O R
Discovered in early 2024, the XZ Utils vulnerability is a smoking gun that proves malware is being

created intentionally by serious, well-funded actors. This sophisticated campaign targeted an over-

worked open source maintainer, and nearly managed to insert encrypted backdoor code that would

have granted the attacker a backdoor into nearly all of the world’s servers.

READ OUR ANALYSIS

https://www.ncsc.gov.uk/files/White-paper-Ransomware-extortion-and-the-cyber-crime-ecosystem.pdf
https://cloud.google.com/blog/topics/threat-intelligence/unc5537-snowflake-data-theft-extortion#:~:text=REDLINE%2C%20RACOON%20STEALER%2C-,LUMMA,-and%20METASTEALER.%20For
https://cloud.google.com/blog/topics/threat-intelligence/unc5537-snowflake-data-theft-extortion#:~:text=REDLINE%2C%20RACOON%20STEALER%2C-,LUMMA,-and%20METASTEALER.%20For
https://www.sonatype.com/blog/crytic-compilers-typosquats-known-crypto-library-drops-windows-trojan
https://www.sonatype.com/blog/devs-flood-npm-with-10000-packages-to-reward-themselves-with-tea-tokens
https://www.sonatype.com/blog/cve-2024-3094-the-targeted-backdoor-supply-chain-attack-against-xz-and-liblzma

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 35

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 35

EVOLUTION OF OPEN SOURCE RISK

In the 2015 edition of Sonatype’s State of the Software Supply Chain Report, we introduced the

concept that “components age like milk, not wine.” For our 10th report, we’ve refined the metaphor: most components

age more like steel, not aluminum.

Today, software organizations resemble manufacturers, assembling products from hundreds of open source compo-

nents. Like traditional manufacturing, the quality and longevity of components determine a product’s success.

Choosing high-quality components and committing

to rigorous maintenance practices is the key to build-

ing durable and secure software. Yet, despite known

risks, many organizations ignore these best practices

and use outdated components. This exposes them to

vulnerabilities and defects that could be avoided with

the right tools, data, and strategy.

Unlike industries where defective materials are

swiftly removed, software manufacturers tolerate

flawed parts from suppliers they haven’t vetted. A

vigilant approach to supply chain management is

essential to fully benefit from open source. Manufac-

turers must prioritize quality, monitor emerging risks,

and address risks throughout the software lifecycle to

ensure long-term security and reliability.

Evolution of Open Source

RISK

95%
percentage of vulnerable downloaded
releases that already had a fix

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 36

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 36

EVOLUTION OF OPEN SOURCE RISK

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 36

Open Source Software Quality

Vulnerabilities can make headlines, but our research shows

that the best open source projects find and fix vulnerabil-

ities quickly. Unfortunately, the majority of open source

downloads are not of the fixed, non-vulnerable version.

For example, our previous research found that ~96%

of vulnerable downloaded open source components

had a newer, non-vulnerable version available at the

time of the download. As part of our analysis this year, we

reviewed and updated our algorithm completely. Despite

our revisions, that number decreased by less than 1%, high-

lighting a considerable deficit in changing open source con-

sumption behavior, an issue we dive deep into in this year’s

report’s Optimizing Efficiency & Reducing Waste section.

The magnitude of these figures is further punctu-

ated when looking at Log4j downloads. When writing

this report, 13% of all Log4j downloads were still of

a vulnerable version, even though a non-breaking,

non-vulnerable version existed. While this is significantly

better than the 30-35% we saw in our last report — nearly

three years since the Log4Shell vulnerability made head-

lines — that number should be much closer to 0.

Despite Log4Shell being one of the most well-known

vulnerabilities encountered in the last ten years, devel-

opment teams continue to introduce risk through known

vulnerabilities regardless of available fixes. Though, we

are happy to see the decrease, which shows that this

message is reaching some audiences.

Blaming open source alone is like pointing one finger

while three point back. While vulnerabilities exist, their

impact lies not in sheer numbers but in timely fixes and

the persistence of unfixed issues and risks. More import-

ant than the number of vulnerabilities is how quickly a

vulnerability is fixed and the number of remaining unfixed

vulnerabilities, as these factor into Persistent Risk.

FIGURE 3.1

Log4j Percent Monthly Central Downloads

Downloads of vulnerable versions of Log4J still greater than 10% nearly three years after fixes were available.

https://www.sonatype.com/hubfs/SSC/2023%20Sonatype-%209th%20Annual%20State%20of%20the%20Software%20Supply%20Chain-%20Update.pdf
https://www.sonatype.com/resources/log4j-vulnerability-resource-center
https://www.sonatype.com/resources/log4j-vulnerability-resource-center

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 37

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 37

EVOLUTION OF OPEN SOURCE RISK

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 37

Persistent Risk

Persistent Risk is new this year. Based on our research,

we found that risk is deeply impacted by ongoing expo-

sure to vulnerabilities that remain unresolved over time.

To support this, we defined Persistent Risk using two pri-

mary factors: Unfixed and Corrosive Risk.

• Unfixed Risk refers to vulnerabilities within software

components that have been identified but have yet

to be addressed and, in many cases, will never be

addressed. It also incorporates the time it takes to

remediate a vulnerability. These known vulnerabilities

pose a continuous threat, leaving the software open to

exploitation.

• Corrosive Risk impacts current and historical

releases. Like Unfixed Risk, corrosive risk considers

the time needed to resolve these vulnerabilities.

However, corrosive risk also incorporates the delay in

discovering vulnerabilities in old versions. The longer

it takes to find and resolve these issues, the more the

software is exposed to potential attacks.

When combined, these two factors create Persistent Risk —

a risk that remains unfixed and corrodes the software’s

security integrity over time.

Just as corrosion slowly eats away at the metal, a long

time to discover and fix increases the corrosive potential

of Persistent Risk. The longer vulnerabilities go undis-

covered and unfixed, the more they weaken the software,

making it increasingly susceptible to breaches and failures.

This corrosive potential is not just about the immediate risk

of a known vulnerability but also about how the delayed

discovery allows the risk to compound, leading to a grad-

ual and often unnoticed security degradation over time.

The image above shows an analysis of Persistent Risk.

FIGURE 3.2

Persistent Vuln Risk = Unfixed Risk + Corrosive Risk

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 38

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 38

EVOLUTION OF OPEN SOURCE RISK

Persistent Risk = Unfixed Risk + Corrosive Risk.
As time increases without addressing vulnerabilities, the

risk becomes more ingrained, corroding defenses and lead-

ing to a fundamentally compromised state of security. This is

why promptly addressing vulnerabilities is essential — delay

leads to corrosion, which can lead to catastrophic failure.

Again, a finger may appear pointed at open source soft-

ware projects; however, our analysis indicates that the

best projects will address most vulnerabilities quickly.

Those projects are also more likely to improve their secu-

rity posture and software supply chain best practices using

tools like those in the Open Source Security Foundation’s

Scorecard. Our conclusion is that Persistent Risk is driven

more by open source consumption practices than by an

inherent quality issue with open source software.

Open Source Consumption

Over the past decade, poor open source consumption has

emerged as the clearest indication of risk in the software

supply chain. As we now focus on Persistent Risk, the role

of open source consumption has only grown.

However, defining risky behaviors and helping organiza-

tions identify low-quality components remains challenging.

This year, we partnered with Tidelift, the CHAOSS Project,

and various open source software community members

to better understand how three specific factors of open

source consumption influence the health and security of

software supply chains.

• Choice: Choice is determined by a software manufac-

turer’s selection of open source software. Making good

choices when choosing components is critical, mean-

ing software manufacturers should prioritize avoiding

projects with Persistent Risk to ensure a robust and

secure software supply chain.

• Complacency: Complacency becomes a risk when soft-

ware manufacturers fail to properly update and maintain

their open source software by managing dependencies.

This negligence leaves them vulnerable to corrosion, as

vulnerabilities persist and accumulate over time.

• Contamination: Contamination occurs when open

source malware or malicious packages infiltrate the

software supply chain, often targeting the development

infrastructure. Poor choice and complacency are high-

risk consumption factors that increase the likelihood

of contamination entering software supply chains. This

underscores the need for heightened awareness and

proactive measures to protect against these threats.

Continue reading to learn how these three risk factors

affect the analysis of 7 million open source projects.

Persistent risk is driven more by open source
consumption practices than by an inherent
quality issue with open source software.

T H R E E FACTO R S I N F LU E N C I N G T H E

H E A LT H O F S O F T WA R E S U P P LY C H A I N S

Choice is determined by a software

manufacturer’s selection of open

source software.

Complacency becomes a risk when

software manufacturers fail to update

& manage dependencies.

Contamination occurs when open source

malware or malicious packages infiltrate

the software supply chain.

https://github.com/ossf/scorecard
https://github.com/ossf/scorecard

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 39

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 39

EVOLUTION OF OPEN SOURCE RISK

Can We Minimize Persistent Risk

For those seven million open source software projects,

we collected data at the component level and classified

each component into distinct groups based on their

usage in enterprise applications.

For our analysis, we considered two groups: core and

peripheral components. We took a representative and

statistically significant sample from each group, then

identified which key metrics had the potential to minimize

Persistent Risk.

We also categorized these components into three spe-

cialized groups. The key difference between the core

and peripheral component groups and the specialized

groups is exclusivity – components can only belong to

one of the core or peripheral groups, while the specialized

groups are inclusive. A component can simultaneously

be part of SBOM, Foundation Support, and Paid Support.

Each specialized group is defined by distinct practices

that influence how an open-source project provides its

components.

• SBOM — Components published with at least one

SBOM. Projects releasing an SBOM demonstrate

responsiveness to the emergent need for better soft-

ware supply chain management practices, and we

hypothesized that this points to better security practices.

• Foundation Supported — Components that are part

of a project supported by a foundation like Apache,

Eclipse, or The Cloud Native Computing Foundation

(CNCF). Projects under a foundation receive guidance

and are part of a larger ecosystem with established

best practices, and we hypothesized that this points to

better security practices.

• Paid Support — Commercial organizations, such as

Tidelift, pay the open source project maintainer. The

components are part of projects that receive funding and

are given the resources to address maintenance needs

that otherwise might not get attention. We hypothesized

that this also includes better security practices.

By analyzing projects through these lenses, we better

understand how different factors contribute to or mit-

igate the risks associated with open source software

consumption. This approach underscores the importance

of selecting the right projects, maintaining vigilance in

dependency management, and avoiding contamination

to minimize the long-term risks to software supply chains.

The diagram shows how the specialized groups intersect with the usage groups.

FIGURE 3.3

Specialized Groups by Usage

C O M P O N E N T T Y P E S A N A LY Z E D

Frequently found in

enterprise applications

Core
Components

Peripheral
Components

Rarely, if ever, found in

enterprise applications

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 40

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 40

EVOLUTION OF OPEN SOURCE RISK

Choice

A key goal of this year’s report is to define what consti-

tutes high-quality open source components. This effort

stems from a core belief that the principles guiding sup-

ply chain best practices are equally applicable to the

software supply chain — a belief that remains unchanged,

though our understanding has deepened.

One of the most striking insights came from our analysis

of discoverability, which revealed the vast landscape

of open source projects. Despite the seemingly infinite

number of components available (more than seven mil-

lion), only a small percentage — 10.5% — are actively cho-

sen (just over 762,000). This disparity between the pop-

ularity and usage of open source projects underscores

the significant noise developers must sift through when

choosing a component.

We also discovered that while it’s challenging to pinpoint

a single, definitive marker of high quality, there are key

indicators that collectively paint a clearer picture of what

quality is not. While no universal standard or indicator

exists today for consumers of open source software to rely

on, we identified a set of key heuristics. We tested them

against our data and analysis. These markers are designed

to help software developers make informed choices

regarding open source software projects (suppliers).

1. Popularity is important: Aligning usage with the mass

of other users can be a helpful starting point. We found

that popular components have 63% more vulnerabil-

ities identified, address 54% more, and fix them 32%

faster (~50 fewer days). While this is a good heuristic, it

is not a foolproof quality measure in isolation.

2. Active communities manage software quality better:

Our analysis showed that active project communities

often correlate with better-managed software quality.

However, this relationship does not necessarily reduce

Persistent Risk.

This pie chart shows developers’ challenge when choosing among millions of

components; nearly 90% will be noise.

FIGURE 3.4

Open Source Developer Choice

762,000
the number of components actively
downloaded and used in software, of the
more than 7 million available

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 41

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 41

EVOLUTION OF OPEN SOURCE RISK

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 41

5. Stars and forks shed a light on community engagement:

Our analysis confirmed that the number of stars and

forks on an open source repository correlates with the

level of community engagement. However, this metric

alone may not reliably indicate the overall quality or

Persistent Risk of a project.

As we refined this list, it became clear that while there are

heuristics that point towards quality, every measurement

should ultimately be assessed against risk. But risk itself

is more complex than the mere existence of a vulnera-

bility. Many projects have vulnerabilities, but how they

respond to them matters.

Based on our definition of Persistent risk, two metrics

are critical: fix rate and time to remediate across usage

and specialized groups.

3. SBOMs demonstrate good supply chain practices:

Projects that publish a Software Bill of Materials (SBOM)

make supply chain management more manageable and

tend to exhibit lower Persistent Risk. Projects investing

in good supply chain practices, such as early adoption of

SBOMs, produce higher-quality software.

4. OpenSSF Scorecard could help reduce Persistent Risk:

The OpenSSF Scorecard was assessed for its correla-

tion with Persistent Risk. While it provides valuable

insights into various security practices, its effective-

ness as a standalone predictor of low Persistent Risk

remains inconclusive and requires further exploration.

This chart displays the Average Unfixed Vulnerabilities by Severity.

FIGURE 3.5

Average Unfixed Vulnerabilities by Severity

This bar graph shows the average number of vulnerabilities by severity

(Critical, High, Medium, Low) across different groups (Core Components,

Peripheral Components, SBOM, Foundation Support, Paid Support).

FIGURE 3.6

Mean Time to Remediate Vulnerabilities by Severity

https://github.com/ossf/scorecard

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 42

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 42

EVOLUTION OF OPEN SOURCE RISK

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 42

The Impact of Foundation Support
on Open Source Quality

The chart shows how foundation-supported open source components reduce risk.

FIGURE 3.7

Comparing Open Source Foundation Supported
Components to Components Without Foundation Support

Our analysis highlights a compelling trend: open source projects supported by recognized foundations, such as

the Apache Software Foundation, Eclipse, and the Cloud Native Computing Foundation, consistently outperform

non-foundation-supported projects across several key quality metrics.

Vulnerability Management: Foundation

projects resolve security issues 264 days

faster on average, minimizing risk exposure.

Release Cadence: With 72% fewer days

since their last update, foundation projects

show better maintenance, while non-

foundation projects are more prone to

becoming obsolete or reaching EOL.

Code Freshness: Non-foundation projects

use dependencies that are, on average,

10 libyears older, increasing the risk from

outdated components.

Security Practices: Foundation projects are

4.1x more likely to have formal vulnerability

reporting and have a 94% higher fix rate,

showing proactive security measures.

Community Engagement: Foundation

projects have 265% more forks and 162%

more stargazers on GitHub, reflecting

broader interest and quicker updates.

Issue Management: While foundation

projects have more active issues, they close

1.8x more, ensuring sustained momentum

and backlog reduction.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 43

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 43

EVOLUTION OF OPEN SOURCE RISK

Next, we evaluated these metrics across the identified

groups to simulate a practical example of how Persistent

Risk is driven by the number of unfixed vulnerabilities and

the time (days) it takes to fix them.

The chart above demonstrates how unfixed vulnerabili-

ties can grow exponentially when not addressed. Consid-

ering the scale over the ten years we’ve been producing

the State of the Software Supply Chain Report, this shows

the potential for exponential growth.

In the next simulation, we’ve normalized based on the

average vulnerability counts we identified for a compo-

nent in a specific usage or specialized group.

In our data, SBOMs had a higher incidence of vulnera-

bilities, yet their ability to quickly address and fix most of

those vulnerabilities makes a significant difference.

Corrosiveness impacts long-term security and stability in

low-usage component groups. This underscores the impor-

tance of choosing and maintaining components wisely to

mitigate the corrosive impact on the software supply chain.

Though we’ve demonstrated the impact of unfixed

vulnerabilities and the time it takes to fix them, seeing

the benefit of open source projects’ hard work requires

proper dependency management. In other words, a fixed

vulnerability is technically unfixed until an upgrade.

I N C E N T I V E S PAY O F F
Paid maintainers show a clear lead in security practices. Projects with paid support are nearly three times more likely to

have a comprehensive security policy formed through best practices like those verified through the OpenSSF Scorecard

project, suggesting better vulnerability identification processes. At the same time, non-paid packages tend to accumulate

more vulnerabilities, with paid packages having only a third of the unfixed vulnerabilities seen in non-paid ones. Addition-

ally, components with paid support resolve outstanding vulnerabilities up to 45% faster and have half the vulnerabilities

overall. This data highlights that incentivized maintainers produce more secure and efficient outcomes. This is consistent

with the 2024 Tidelift State of the Open Source Maintainer Report that paid maintainers implement 55% more critical

security and maintenance practices than unpaid maintainers.

This chart displays the Average Unfixed Vulnerabilities increasing in severity.

FIGURE 3.8

Simulation: Impact of Unfixed
Vulnerabilities on Risk Growth

This graph shows the average number of vulnerabilities.

FIGURE 3.9

Simulated 1 Year Impact of Unfixed
& Time to Remediate on Vulnerabilities

https://openssf.org/projects/scorecard/
https://openssf.org/projects/scorecard/
https://tidelift.com/open-source-maintainer-survey-2024

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 44

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 44

EVOLUTION OF OPEN SOURCE RISK

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 44

Ultimately, the highest-quality components will reduce

risk and fix most of their vulnerabilities, and they do so

quickly. However, making the right choice is just one

aspect of mitigating Persistent Risk. Proactive depen-

dency management is essential to avoid or significantly

reduce this risk effectively. Unfortunately, our data pres-

ents a sobering reality, indicating software manufacturers

are plagued by complacency.

Complacency

Complacency is generally defined as a false sense of

security or neglect, where one is unaware or unconcerned

about potential dangers. In open source software, com-

placency manifests as the failure to update and maintain

dependencies properly, akin to neglecting rusting steel.

Open source components, like steel, rust over time. Thus,

maintenance is critical to ensure durability and structural

integrity. When software manufacturers neglect their

dependencies or fail to upgrade them appropriately, the

corrosive nature of Persistent Risk takes hold, leading to

gradual and eventual decay.

Complacency is hard to spot, and dependency manage-

ment isn’t only about failing to upgrade. Upgrading to a

still-vulnerable dependency can be just as damaging. It’s

like replacing rusty steel with equally corroded material.

Once corrosion sets in, fixing it becomes costly. Fortu-

nately, our findings show this decay is entirely avoidable.

In our analysis, we first assessed how many enterprise

application dependencies had yet to be upgraded within

a year. The findings were sobering: 80% were unman-

aged and remained outdated. Delving deeper, we found

that managed and updated dependencies still used 3.4%

of components with a vulnerability. Only 0.5% of compo-

nents were without a better choice because they had no

fixed version available (no path forward or NPF).

The graphic above simulates the impact of poor dependency management practices.

FIGURE 3.10

Risk of Complacent Behavior

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 45

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 45

EVOLUTION OF OPEN SOURCE RISK

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 45

Excluding complacent behavior, the risk rate could be

lowered to 0.5% associated with NPF. However, for

complacent dependency management, the risk rate is

seven times higher at a staggering 3.6% of components

that became vulnerable but were not updated or were

updated to another vulnerable version, highlighting the

critical difference between active and passive depen-

dency management. The following diagram exemplifies

how complacent behavior results in 4 vulnerabilities that

could have been avoided.

These findings highlight how quickly risks can accumu-

late without proactive management. All open source

or commercial software will eventually have bugs that

evolve into vulnerabilities; hence, the metaphor: compo-

nents age like steel, not aluminum. There is a silver lining,

though, albeit short-lived.

For the components described above, those that exhib-

ited complacent risk, 95% were avoidable by the end of

the period. In other words, for almost 95% of components

that had a vulnerability, within a year, there was at least

one newer, non-vulnerable version available. We also

know that many open source projects address vulnerabil-

ities much faster.

To better understand a project’s susceptibility to cor-

rosion, we analyzed “libyears,” a metric that captures

the cumulative age of a component’s dependencies.

The risk intensifies with End-of-Life (EOL) components,

which no longer receive updates, leading to the gradual

breakdown of software integrity. Our findings indicate

that complacent dependency management, especially

involving EOL components, results in significantly more

vulnerabilities, steadily eroding security posture and

underscoring the need for proactive management.

80%
of enterprise application dependencies
were unmanaged and remained outdated
within a year.

While libyears increase with dependency count, there is significant variation in how outdated dependencies are, even for similar-sized applications.

FIGURE 3.11

Libyears

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 46

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 46

EVOLUTION OF OPEN SOURCE RISK

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 46

Libyears reveal how outdated dependencies can harbor

significant risks. Even when choosing the latest com-

ponent version, it’s critical to assess the freshness of

its dependencies. Higher libyears correlate with more

vulnerabilities, particularly in larger applications.

This reinforces the importance of vigilance, especially as

EOL components present severe risks by leaving vulnera-

bilities unaddressed, further weakening software security.

Our analysis of over 20,000 enterprise applications

shows that reliance on EOL components strongly indi-

cates increased security vulnerabilities. Simply removing

these components often offers minimal improvement,

revealing that the corrosion of complacent behavior runs

deeper, affecting the entire software framework. Vulner-

abilities aren’t limited to EOL components, and managing

only EOL components is insufficient. Still, the presence of

EOL components indicates the lack of dependency man-

agement, and like EOL components are allowed to exist,

so are vulnerable versions of other components. Routine

upgrades alone aren’t enough; without a strategic, proac-

tive approach to dependency management, corrosion will

continue to undermine software integrity.

When considering Persistent Risk, complacent depen-

dency management compounds the corrosive aspects

of Persistent Risk. When not addressed, corrosion can

erode even the most robust systems if not actively man-

aged. And, as corrosion silently compromises software

integrity, the risks escalate, paving the way for contamina-

tion. For software manufacturers that fail to minimize Per-

sistent Risk through informed choices, contamination risk

— the new frontier of attacks — moves beyond Persistent

Risk, posing a critical, new threat many software manufac-

turers have yet to realize.

Our analysis of over 20,000 enterprise
applications shows that reliance on EOL
components strongly indicates increased
security vulnerabilities

More EOL components per application correlate with a higher number of

security vulnerabilities.

FIGURE 3.12

More EOL Components per Application
Lead to More Security Vulnerabilities

FIGURE 3.13

EOL Components Signal Broader
Vulnerabilities in Non-EOL Packages

Applications with more EOL components still show higher vulnerabilities

in non-EOL packages, suggesting EOL presence reflects broader mainte-

nance issues.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 47

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 47

EVOLUTION OF OPEN SOURCE RISK

Contamination

Open source malware acts as a contaminant in the digital

supply chain, undermining the security and stability of

systems and exposing them to significant risks.

To better understand contamination, consider head-

line-grabbing attacks like NotPetya, Octopus Scanner

(NetBeans), and SunBurst (SolarWinds). These incidents

occurred despite the proliferation of malware scanning

tools, highlighting a critical gap in modern information

security practices.

The XZ Utils incident exposed the dangers of neglected

open source projects, which become easy targets with-

out proper care. While a vigilant developer averted disas-

ter, the core issue remains unresolved. It’s only a matter

of time before another neglected project faces attack.

This risk is not theoretical — it’s an urgent threat with

potentially far-reaching consequences.

Open source malware targets anyone using open

source software, but teams making poor choices and

neglecting proper dependency management practices

are at even greater risk. Once again, complacency plays

a significant role here, as many security teams need a

deeper understanding of the unique challenges posed

by open source malware.

Traditional scanning tools effectively identify and prevent

known malware but struggle with novel attacks, especially

those embedded in malicious open source packages. While

these tools can catch established threats, they often miss

the hidden dangers within open source components, par-

ticularly when the malicious code is deliberately designed

to evade detection. This limitation underscores the need

for more advanced security measures that can address the

unique challenges posed by sophisticated, elusive attacks.

As part of our analysis, we examined 512,000 pieces of

open source malware that had been introduced into pub-

lic binary repositories since November of 2023. While the

majority of malware is of medium risk, a substantial por-

tion (almost 17%) poses critical security risks.

When comparing a sample of 84k components, 42k

of which are core and 42k peripheral, we found that periph-

eral components were 25x more likely to contain mal-

ware. The peripheral packages are less commonly used in

enterprise applications but target automated builds or sce-

narios where a component is set to pull the latest version.

Open source malware targets innovators, exploiting soft-

ware manufacturers with poor consumption practices.

This year’s analysis shows many are vulnerable, whether

by failing to equip developers with the right tools or rely-

ing on complacent approaches like automatic upgrades.

Malware doesn’t discriminate, and current scanning

methods don’t guarantee risk reduction. The conse-

quences of persistent contamination remain severe.

FIGURE 3.14

Malware Introduced to Public Binary
Repositories Over Time

Open source malware has spiked over the past 3 months.

https://www.sonatype.com/blog/cve-2024-3094-the-targeted-backdoor-supply-chain-attack-against-xz-and-liblzma

This year we estimate open source downloads to be over 6.6 trillion — the scale of open source is

unfathomable. We also know that commercial state-of-the-art software is built from as much as 90% open source code,

including hundreds of discrete libraries in a single application. While use of OSS accelerates application development

cycles and reduces expenses, it also introduces threat vectors in the form of vulnerabilities and intellectual property (IP)

risk from restrictive and reciprocal licenses.

Managing these OSS risks in DevOps organizations, with any type of success, must involve efficient security policies and

practices that are capable of keeping pace with the evolution and addition of new OSS libraries in the accelerated devel-

opment environment leading to rapidly changing risk profile.

Previously we talked about the Persistent Risk and how open source con-

sumption factors into creating that risk. We also talked about complacency

within dependency management — and found that 80% of enterprise applica-

tion dependencies were not upgraded within a year. We also know from past

analysis that of those versions that do get upgraded, 69% had a better choice.

And, that 95% of all vulnerable versions used to begin with had a non-vulnera-

ble fix available and 62% of consumers used an avoidable vulnerable version.

These sobering statistics led us to where we are now — diving deep into how

organizations can change their consumption behaviors to optimize risk miti-

gation efforts and reduce waste, especially waste that might occur in targeting

lower priority risks.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 48

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 48

OPTIMIZING EFFICIENCY & REDUCING WASTE

62%
of open source
consumers used an
avoidable vulnerable
component version

OPTIMIZING
Efficiency & Reducing Waste

https://www.sonatype.com/hubfs/SSC/2023%20Sonatype-%209th%20Annual%20State%20of%20the%20Software%20Supply%20Chain-%20Update.pdf
https://www.sonatype.com/hubfs/SSC/2023%20Sonatype-%209th%20Annual%20State%20of%20the%20Software%20Supply%20Chain-%20Update.pdf

Size Doesn’t Matter: All
Applications Have Sizable Risk

The average application has around 180 open source

components — that’s an increase from around 150 from

which we found last year. All of these packages, when left

unmanaged can be a source of risk and as we saw in pre-

vious chapters of this report — that risk is only growing. It

won’t be if you get breached, but when.

There is no denying the data shows the larger the appli-

cation, the larger the risk. It should come as no surprise

that as application size grows, so does the number of

dependencies. The sheer size of the code base and com-

plexity of large applications makes it harder to manage.

As a result, organizations need more time to remediate the

vulnerabilities. The more time you take, the higher the risk.

However, it became abundantly clear that there is no

‘small’ application that is trivial to manage. Further, our

data shows that most applications are in fact large appli-

cations — around 40%. So, there is no organization that

doesn’t have to contend with this problem. No matter

the size of an application — whether you only have 25

dependencies or you have 400 or 800 dependencies

(which is not abnormal) — it is an unmanageable manual

workload. You can and must gain efficiency across all

applications regardless of their size, especially as the

industry moves more towards microservices and mod-

ularizing applications, which will mean smaller applica-

tions. Optimizing management of 1,000 small applications

is just as beneficial as optimizing 1 large application.

So, how do enterprises get a handle on this massive issue

that is not only causing increasing risk to them and their cus-

tomers, but is also wasting an incredible amount of time? We

must first understand two interrelated key concepts:

• Efficiency Hurdle: Development time is limited with

little or no allocation in schedules for remediation tasks

or dependency upgrade research. Stopping builds and

slowing down pipelines to review risks due to vulner-

abilities manually is impractical and goes against the

flow of DevOps, frustrating teams as a result. It also

frustrates developers, causing intense friction, which is

why organizations must prioritize reducing waste.

• Reduce Waste: The efficiency hurdle is a solvable

problem. Enterprises can create efficiency and thus

reduce waste, by optimizing remediation via a com-

bined approach of an enterprise-scale SCA tool, highly

accurate component intelligence, and effective depen-

dency management practices.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 49

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 49

OPTIMIZING EFFICIENCY & REDUCING WASTE

FIGURE 4.1

Average Number of Packages per Application

This chart shows the distribution of application dependency size.

Small: up to 25 dependencies; Medium: 26 to 150 dependencies;

Large: 151 to 400 dependencies; X-Large: 401 or more dependencies.

Stop Wasting Developer Time —
What to Look for in an SCA Tool

Integrate for effective but non intrusive
software composition analysis
Fixing vulnerabilities is a huge time drain on development

cycles. It will be faster if vulnerability detection is integrated

in development environments or CI/CD pipelines. The right

tool will provide context for the expected functionality of

the component, so developers can make informed deci-

sions on deciding the best version to use in real-time.

We’ve all now heard the concept of Shifting Left or mov-

ing the remediation as close to the beginning of the

development cycle. While we still agree with this, we’ve

found you must go even further — you must review

dependences on a continuous basis, there is no begin-

ning or end. Reviewing dependencies and remediation

needs to be incorporated into the regular flow of devel-

opment, shifting it into development rather than at ‘test’

or ‘release’ time. But, to be successful it needs to be

much more efficient than it is now, since it’s now being

done more frequently and can disrupt the development

pace. This is the only way to reduce downstream and

upstream effects, rework and wasting developer time.

For an SCA tool to be successful, it must be integrated

within the CI/CD pipelines and provide context for the

expected functionality of the component, so developers

can make informed decisions on deciding the best ver-

sion to use. If your tool does this, you’re one step closer

to reducing waste.

Demand High-Quality Open Source
Component Intelligence
Reliable component intelligence is the foundation of

efficient risk remediation and dependency management.

Component intelligence depends upon the quality of the

underlying vulnerability data.

There are two main contributing factors of high quality

vulnerability data to look for:

1. Scoring the vulnerabilities in a consistent and repeat-

able manner, in line with industry standards

2. Comprehensive coverage of the correlation to libraries

and versions affected by the vulnerability

We’ve found that 92% of crowdsourced or publicly

available vulnerability data needed a correction once

detailed security research took place that more accu-

rately correlated the source of the vulnerability to

affected versions of the libraries.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 50

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 50

OPTIMIZING EFFICIENCY & REDUCING WASTE

FIGURE 4.2

Corrected Version Information

This pie chart shows that 92% of public vulnerability information had a version

correction after deeper review.

While public data is often accurate for a single version, it

tends to be wrong when it comes to multiple versions —

usually because the version range is incorrect. This creates

a false sense of security, as you might assume, “the version

I’m using isn’t affected.” But that’s often not true; the security

researcher simply didn’t review all versions thoroughly. It’s

important to understand that while the version mentioned

in a public advisory is typically correct, many other versions

haven’t been reviewed or validated at all.

We dug deeper on accuracy of scoring and found that

69% of vulnerabilities that were initially scored below 7

were corrected to 7 or higher, and 16.5% were corrected

to 9 and higher. This creates what we’re calling surprise

risk and a false sense of comfort that you’re not at risk.

To reiterate, incorrectly scored low vulnerabilities lead to

emergency reactive work when the true threat is realized.

The surprise reactive work and surprise risk negatively

impacts the flow of development, leading to inefficiency,

in addition to a false sense of security that could result

in a breach or service interruption. Vulnerabilities

detected after a serious breach or incident demand a

higher resolution time, in addition to the lack of trust and

endangering lives, in extreme cases.

The converse is incorrectly scored high vulnerabilities

which diverts development capacity to remediate, taking

away precious time that could be spent on true high prior-

ity vulnerabilities that could lead to serious impacts.

It must be emphasized that the component intelligence

built into your SCA tool must give accurate vulnerability

data and avoid wasting development capacity, by target-

ing remediation efforts on high priority vulnerabilities.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 51

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 51

OPTIMIZING EFFICIENCY & REDUCING WASTE

FIGURE 4.3

Score Corrected Aggregations

This bar chart depicts public vulnerability score corrections by score severity, 10 through 1.

Comprehensive Ecosystem Support
Different ecosystems have a different number of depen-

dencies and could directly affect the size of your appli-

cation. A general perception is that Java and JavaScript

have a lot of dependencies, while other ecosystems

are more manageable. This could cause complacency

among the developers using non-Java ecosystems,

based on the false understanding that fewer dependen-

cies mean fewer vulnerabilities or easier to manage.

Our data actually shows that the PyPI ecosystem (the

Python ecosystem which tends to have low dependen-

cies) has more vulnerabilities per package as compared

to other ecosystems. Enterprises cannot rest on using

“low-dependency” languages because even when you

think you’re using a low dependency — or lower average

number of components — you’re still very much at risk

and need to practice efficient dependency manage-

ment, thus you need a good SCA tool that covers a wide

breadth of ecosystems.

Further, most enterprises are using more than one eco-

system within their application portfolio, underscoring

the importance of having an SCA tool that supports

comprehensive ecosystems.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 52

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 52

OPTIMIZING EFFICIENCY & REDUCING WASTE

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 52

FIGURE 4.4

Average Number of Components (Packages)
per Application, by Ecosystem

FIGURE 4.5

Average Number of Vulnerabilities in Top 10
Most Popular Packages, by Ecosystem

This bar chart shows the average number of ecosystem packages used by

an application, covering Maven, npm, NuGet, PyPI, and Go.

This bar chart shows the average vulnerability counts for the top 10 most

popular packages by ecosystem (Maven, npm, NuGet, PyPI, and Go), along

with the number of severe vulnerabilities.

Mature Dependency Management Workflows
Risk based prioritization is essential to minimize the time

spent on remediating vulnerabilities. There are several

approaches to how an organization can assess and prior-

itize risks to optimize the remediation process. Some of

them include:

• Performing Reachability Analysis to determine what

actual components in the dependency chain are being

called by the applications and are vulnerable.

• Assessing risks due to vulnerabilities that are exploit-

able in the runtime environment of the application.

Reachability Analysis is an optimization approach to achiev-

ing a near-zero risk scenario in a limited amount of time.

Reachability involves detecting vulnerable method signa-

tures in the execution paths of an application (call graph),

regardless of whether it is directly called from the applica-

tion or through other OSS libraries. Teams can target their

remediation efforts towards these reached vulnerabilities.

However, the effectiveness of this kind of prioritization

greatly depends on a combination of the following factors:

• The accuracy of the call graph generated

• The accuracy of the CVE scores being targeted for

remediation (see the importance quality data)

• CWE (determination of the impact if the vulnerability

manifests itself in an exploitable manner)

Targeting remediation of only vulnerabilities detected

after Reachability Analysis, having high CVE scores only

(9 or 10) without considering the CWEs could create a

false sense of security.

All declared vulnerabilities may not manifest themselves

as exploitable in a given runtime environment. An appli-

cation’s runtime environment (public SaaS, distributed for

customers to run and operate, having access to sensitive

information etc.) could be determinant in the priority of its

remediation. Knowledge of declared CWE and its accu-

racy, including a thorough analysis of base level weak-

nesses, variant weaknesses and composite weaknesses

(a set of weaknesses that are reachable consecutively

in order to produce an exploitable vulnerability), is a key

factor to avoiding such risks.

Aligned with Cybersecurity
Compliance Requirements
For organizations serving the federal sector, or serving

other organizations that support the federal sector, main-

taining an optimal security posture is a hard requirement

to stay in compliance with FISMA policies. This is achieved

by remediating all “high” and “critical” vulnerabilities in the

production environment.

Features like continuous monitoring and reporting

offered by SCA tools provide real-time insights into the

severity of vulnerabilities, as they are discovered at

various stages of the development cycle. Developers

can target “high” and “critical” vulnerabilities and avoid

spending time remediating others to stay in compliance.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 53

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 53

OPTIMIZING EFFICIENCY & REDUCING WASTE

E X A M P L E S O F V U L N E R A B I L I T I E S T H AT M AY B E E X P LO I TA B L E :

Network exploits could occur only if the application is

meant to run on public WAN/LAN or Internet.

Applications processing sensitive data such as PII,

classified information, and healthcare data are at risk of

accidental exposure due compromised network security

or malicious attempts to gain access.

Open Source License Risk Profile

Generally, licensing tends to lie outside of developer or

security teams interest. Swept away by the creative and

innovation waves, developers use the latest and most

popular components available to stay ahead of the curve.

Neglecting open source licenses (based on assumptions

that it is open source and free to use) is a huge business

risk. With laws and litigations coming in later, organiza-

tions could get into years of dispute and suffer financial

setbacks involving fines and loss of revenue.

Open source licensing issues, if investigated at all, will

generally not show up before release cycles due to the

effort involved. In the absence of an SCA tool, the pro-

cess to review OSS licenses is manual and time consum-

ing. It could involve reviews done by legal teams, which

puts drag on external teams and resources. As a common

practice, most organizations conduct OSS license com-

pliance reviews once, just before a production release

to save resources, which is very late in the development

cycle and can ultimately create more waste.

Licenses can change from version to version
A typical open source project has an overarching license,

which might not apply to all individual files under the proj-

ect. As contributions to an open source project increase,

individual pieces of code can have different licenses,

which could impact the project downstream.

Some vendor-owned open source projects can also be

relicensed to restrict usage or better control, for exam-

ple, Terraform, previously Mozilla Public License v2.0,

changed to Business Source License (BSL) v1.1; Elas-

ticSearch, previously Apache2.0 License, changed to

non-open source dual license based on SSPL; and Redis,

previously Berkeley Software Distribution (BSD) License,

changed to Redis Source Available License.

The BSL license also gives the vendor the right to change

license further down the road with short or no notice.

Data at left depicts the magnitude of license changes

tracked for multiple projects.

Although the overall license changes appear to be 6% of all

release versions, the remediation tasks being more man-

ual in nature could set release dates back unexpectedly.

Reviewing candidate upgrade versions requires manual

checks, causing delays and sometimes no upgrades at all.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 54

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 54

OPTIMIZING EFFICIENCY & REDUCING WASTE

FIGURE 4.6

Projects with One or More License Changes

This pie chart shows the percentage of projects that had 1 or more license

changes through the version history.

95.56M
Total releases with a license

An SCA tool with a built-in license feature and accurate

OSS legal compliance database can identify potential

compliance and legal issues immediately — decreasing

review time by 2,470%.

Teams can detect license changes which can occur from

version to version for a component by reviewing the

SCA reports. If configured correctly, it can detect license

changes early in the development cycle, allowing suffi-

cient time for linked manual remediation processes (esca-

late, find forked projects with non-restrictive licenses or

adapt usage of commercially available licenses.)

Why Dependency Management Needs to be Much
More than “Just Update to the Latest Version”
Simply put, the latest version of a component may not be

the best version to use. A common practice for avoiding

known security issues is to upgrade to the latest version

of a component, to the point where this upgrade step is

often automated. There is the possibility of the license

being more restrictive than the currently used versions

license, introducing new business risks.

It can allow setting context-sensitive license policies that

are in compliance with the application context, and flag

violations within the development cycle.

Since many OSS licenses come into effect based on

the application’s production environment (distributed,

hosted, or internal), compliance issues may not arise until

a release. An SCA tool can allow setting license policies

to flag non-compliance at various stages in the SDLC

(pre-release or release.)

Backed by accurate and trusted OSS license data,

organizations can review attribution reports, and review

license obligations to stay compliant.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 55

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 55

OPTIMIZING EFFICIENCY & REDUCING WASTE

FIGURE 4.8

Open Source Compliance Legal Review Time
FIGURE 4.7

Unique License Sets per Project

This bar chart shows the sum of the unique licenses sets per project (not

including the first license set) by ecosystem: Maven, npm, NuGet, PyPI, Go).

This bar chart illustrates efficiency gains in legal review time by comparing

duration without and with accurate and comprehensive legal data.

Every dollar spent on software development demands budget justification. This complicates risk

management. The open source world is always changing, with new risks appearing daily through rapid innovation. Tradi-

tional scanning tools are unable to accurately and promptly detect new potential malware. Most organizations struggle

with timely risk management due to a lack of adequate security controls and discipline to enforce better open source

component choices along with the pace of necessary security updates. This results in considerable difficulty in achieving

and maintaining an optimal Mean Time To Remediate.

Developers feel less encouraged or incentivized to adapt to

a security-savvy mindset while developing software using

open source packages due to a lack of proactive guid-

ance from tools, available security data insights, or implied

security processes. Further, the alarming increase in open

source malware and the use of open source downloads as

a vehicle for malware distribution is also highly concerning.

Amid constant backdoors, ransomware, and emerging

threats, security struggled with manual oversight of engi-

neering, whose development teams, despite being the pri-

mary risk source, often ignored security concerns.

However, the expanding risk spectrum and surge in

open source components don’t fully excuse the failure to

choose high-quality components, update them promptly,

or proactively defend against malware attacks.

Most organizations struggle with
timely risk management due to a
lack of adequate security controls
and discipline to enforce better
open source component choices
along with the pace of necessary
security updates.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 56

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 56

BEST PRACTICES

Best Practices
in Software Supply Chain Management

Best Practices

Our findings reinforce the need for software manufactur-

ers to approach open source consumption with diligence.

With the right tools, processes, and best practices, man-

aging these risks and ensuring the security and reliability

of software supply chains becomes possible and efficient.

Informed Selection of Open Source
Components:

• Prioritize components that demonstrate active and

responsive communities. These components are more

likely to address vulnerabilities quickly and maintain a

higher standard of code quality.

• High fix rates and low time to remediate metrics are key

indicators of a component’s reliability. Also, components

with transparent supply chain practices, like publishing

an SBOM, typically exhibit lower Persistent Risk.

Adopt a Comprehensive Quality
Assessment Framework:

• When selecting open source projects, go beyond

surface-level metrics like the number of stars or forks.

While popular projects often fix vulnerabilities more

quickly, they are not inherently risk-free. Ensure your

selection process incorporates more risk-related indi-

cators, such as Persistent Risk across versions.

• Integrate metrics like latency (the average time to vul-

nerability discovery) into your risk assessment frame-

works to better understand and mitigate the long-term

impact of complacency.

Address the Human Factor in Risk
Assessment:

• Educate your development teams on the cognitive

biases that can lead to poor risk assessment, such as

overestimating the benefits of maintaining the status

quo. Encourage a mindset that values proactive risk

management over short-term gains.

Proactive Dependency
Management:

• Regularly audit your open source dependencies to iden-

tify vulnerabilities, particularly those that span multiple

versions. Implement automated tools to track and reme-

diate these issues before they impact your software.

• Develop a systematic approach for updating depen-

dencies as soon as fixes become available. This will

minimize Persistent Risk and prevent software from

“aging like steel.”

Mitigate Complacency
in Maintenance:

• Implement policies that enforce regular reviews and

updates of all open source dependencies, particularly

those neglected for over a year. This approach will com-

bat latent risks and reduce the chances of introducing

vulnerabilities into your software.

• Utilize tooling that provides real-time alerts for out-

dated or vulnerable dependencies, akin to a smoke

detector for your software supply chain. However, it

must only alert when action is truly required. These

tools should prompt timely updates and prevent

complacency.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 57

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 57

BEST PRACTICES

With the right tools, processes, and
best practices, managing these
risks and ensuring the security and
reliability of software supply chains
becomes possible and efficient.

Stay Vigilant Against Malicious
Open Source Software:

• Be particularly cautious when integrating new or

lesser-known components into your software. The

rise of malicious packages targeting innovative or less

frequently used projects necessitates heightened

awareness and rigorous validation.

• Avoid dependency management approaches that

always update components to the latest version.

Instead, upgrades should be considered based on an

optimal version and the optimal version zone, both

strategies we addressed in last year’s report.

Collaboration and
Continuous Improvement:

• Participate in or align with initiatives like the Open

Source Consumption Manifesto and collaborate with

industry groups to stay informed about emerging risks

and best practices.

• Review and refine your open source consumption

policies regularly based on the latest industry research

and metrics, ensuring your organization stays ahead of

new threats and challenges.

Work in the
Upstream:

• Participating in open source projects helps you stay

informed about bugs and vulnerabilities, align your

roadmaps with open source projects, and ensure

your interests are represented. Projects often appre-

ciate the extra set of hands as it helps with their

sustainability.

• Active software supply chain management involves

helping maintain the open source projects you depend

on. Don’t leave it to others, and avoid making yourself

dependent on often unknown entities.

SECURITY ISN’T JUST A DEVELOPMENT ISSUE;

IT’S A BOARDROOM ISSUE.

Securing the software supply chain has become

one of the guiding principles for this raft of legisla-

tion. As we’ve covered in this report, modern soft-

ware development relies heavily on open source

components, and protecting components is critical

to compliance with these new standards.

Before the industry can apply rules, regulations,

and best practices effectively, organizations

need to be able to understand what is being

demanded:

☑ Understanding how new policies
 interact with existing measures

☑ Knowing what organizations
 are impacted

☑ Who’s responsible for what

Cybersecurity is a Universal Issue

In 2024, the policies shaping this movement have

come into sharper focus and, in some cases, are

already being implemented and enforced. While each

country is dealing with its own set of regulations,

cybersecurity is a unifying issue. As such, regulations

are integral to improving the cybersecurity posture of

organizations across the globe. As a global leader in

protecting the software supply chain, we feel that regu-

lations will be foundational to how the industry mounts

effective countermeasures against the always-evolving

cybersecurity threat landscape. Liability has shifted

from just the developers to the consumers of tech-

nology, with potentially harsh financial penalties for

noncompliance.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 58

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 58

BEST PRACTICES

Preparing for Governance and
Regulations Around the World

United States

N I ST S P 8 0 0 - 2 1 8 A N D S E C U R E S O F T WA R E

D E V E LO P M E N T AT T E STAT I O N

When the White House issued Executive Order 14028

on Improving the Nation’s Cybersecurity, it was the first

federal regulation targeting the security of software

components. It was also the impetus for a wave of activ-

ity - both legislatively and industry-driven - designed to

drive immediate improvements in the nation’s IT security

posture. The order included a directive for the National

Institute for Standards and Technology (NIST) to issue

guidance on enhancing the security of the software

supply chain, which it did with an update to The Secure

Software Development Framework (SSDF) Version 1.1, or

NIST SP 800-218.

EO 14028 also requires that system integrators and soft-

ware vendors comply with the Secure Software Devel-

opment Attestation Form provided by the Cybersecurity

and Infrastructure Agency (CISA), which requires vendors

supplying software to federal entities to certify through a

CEO or an authorized designee’s signature that their soft-

ware is developed securely and adheres to the Secure

Software Development Framework (SSDF) guidelines

established by NIST.

T H E S E C U R E S O F T WA R E D E V E LO P M E N T

AT T E STAT I O N F O R M A D D R E S S E S

F O U R H I G H - L E V E L P R ACT I C E A R E A S :

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 59

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 59

BEST PRACTICES

☑ Prepare the Organization
Ensure that the organization’s people, processes,

and technology are prepared to perform secure

software development at the organization level

and, in some cases, for individual development

groups or projects.

☑ Protect the Software
Protect all components of the software from tam-

pering and unauthorized access.

☑ Produce Well-Secured Software
Produce well-secured software with minimal secu-

rity vulnerabilities in its releases.

☑ Respond to Vulnerabilities
Identify residual vulnerabilities in software releases

and respond appropriately to address those vul-

nerabilities and prevent similar vulnerabilities from

occurring in the future.

STAY COMPLIANT WITH NIST SP 800-218
AND CISA ATTESTATION REQUIREMENTS

https://www.sonatype.com/resources/guides/stay-compliant-nist-sp-800-218-cisa-requirements

European Union

N E T W O R K A N D I N F O R M AT I O N

S E C U R I T Y D I R E CT I V E 2 (N I S 2)

NIS2 is the European Union’s most comprehensive

cybersecurity legislation and focuses on critical infra-

structure and essential services. Taking effect on October

17th, 2024, NIS2 replaces the NIS Directive from 2016

and modernizes the legal framework to keep pace with

increased digitization and evolving cybersecurity threats.

Bolstering security for software supply chains is central

to NIS2, and like most EU-wide legislation, NIS2 provides

a minimum framework that member states must adhere

to but allows for flexibility in how it’s implemented at the

national level. In particular, it sets for minimum cybersecu-

rity risk management measures and reporting obligations

in Article 21, Section 2 of NIS2. These include:

a. policies on risk analysis and information system

security;

b. incident handling;

c. business continuity, such as backup management

and disaster recovery, and crisis management;

d. supply chain security, including security-related

aspects concerning the relationships between each

entity and its direct suppliers or service providers;

e. security in network and information systems acqui-

sition, development and maintenance, including

vulnerability handling and disclosure;

f. policies and procedures to assess the effectiveness

of cybersecurity risk-management measures;

g. basic cyber hygiene practices and cybersecurity

training;

h. policies and procedures regarding the use of cryp-

tography and, where appropriate, encryption;

i. human resources security, access control policies

and asset management;

j. the use of multi-factor authentication or continu-

ous authentication solutions, secured voice, video

and text communications and secured emergency

communication systems within the entity, where

appropriate

NIS2 also places an emphasis on reporting and requires

organizations to submit an early warning of significant

cybersecurity incidents within 24 hours. These need

to be submitted to the relevant CSIRT and indicate if

the significant incident is suspected of being caused

by unlawful or malicious acts. Within 72 hours, the first

report must be updated to include an initial assessment

of the incident, including severity and impact. Within a

month, a final report is required that includes a detailed

description of the incident, including its severity and

impact, the type of threat or root cause that is likely to

have triggered the incident, and ongoing mitigation

measures being taken.

DOWNLOAD THE NIS2
COMPLIANCE CHECKLIST

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 60

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 60

BEST PRACTICES

https://www.sonatype.com/resources/guides/nis2-checklist

 European Union

T H E D I G I TA L O P E R AT I O N A L

R E S I L I E N C E ACT (D O R A)

DORA is expected to go into effect in January 2025 and

applies to every bank, investment service, and insurance

company doing business within the European Union –

more than 20,000 companies and third-party service

providers. Like other regulations, it’s also chiefly con-

cerned with the integrity of open source components and

considers software composition analysis (SCA) as a basic

security requirement that all institutions under its guid-

ance must apply. To this end, DORA includes language

outlining how to achieve a high level of digital opera-

tional resilience and emphasizes open source analysis

as a fundamental security requirement:

To reflect differences that exist across, and within,

the various financial subsectors as regards financial

entities’ level of cybersecurity preparedness, testing

should include a wide variety of tools and actions,

ranging from the assessment of basic requirements

(e.g. vulnerability assessments and scans, open

source analyses, network security assessments, gap

analyses, physical security reviews, questionnaires

and scanning software solutions, source code reviews

where feasible, scenario-based tests, compatibility

testing, performance testing or end-to-end testing) to

more advanced testing by means of TLPT.

DOWNLOAD THE DORA
COMPLIANCE CHECKLIST

T H E CY B E R R E S I L I E N C E ACT (C R A)

The European Parliament approved the CRA in March

of 2024 and most of its provisions become enforceable

starting in 2027. This sweeping legislation, which estab-

lishes essential requirements for manufacturers to ensure

their products reach the market with fewer vulnerabili-

ties, applies to any software or hardware product and its

remote data processing solutions, as well as products with

digital elements whose intended use includes a logical or

physical data connection to a device or network.

Specifically, the CRA sets a standard for digital resiliency

in the EU through a focus on the security of the software

supply chain by placing key requirements for the secu-

rity of software components, vulnerability handling, and

reporting requirements on suppliers.

Again, the CRA has been developed with an eye toward

protecting open source software. Incorporating robust

security measures into the development process is nec-

essary to strengthen your approach to OSS components

and SDLC processes that take into account established

best practices that will minimize risks. As a result of the

CRA, all software components will be required to obtain

the CE certification mark.

Organizations will be held accountable if any software or

hardware product that contains digital elements is found

to be non-compliant. If products are discovered to be

non-compliant, sanctions will apply, including fines of up to

€15 million or 2.5% of a company’s global annual turnover,

whichever is higher.

DOWNLOAD THE CRA
COMPLIANCE CHECKLIST

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 61

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 61

BEST PRACTICES

https://www.sonatype.com/resources/guides/dora-checklist
https://www.sonatype.com/resources/guides/eu-cyber-resilience-act-guide

India

This summer, the Securities and Exchange Board of India

(SEBI) introduced the Cybersecurity and Cyber Resilience

Framework (CSCRF) to help enhance cybersecurity for

regulated entities (REs). Critical to the CSCRF is mandat-

ing strict guidelines for software bill of materials (SBOMs)

in order to improve transparency, track vulnerabilities,

and mitigate supply chain risks.

SEBI characterizes the importance of SBOM

management and its benefits in the CSCRF with

the following:

Recent security breaches at third-party vendors like

Apache (Log4j), SolarWinds, etc. have led to the

introduction of Software Bill of Materials (SBOM)

that enables an organization to identify possible vul-

nerabilities in the applications/ software solutions.

Key SBOM mandates of the CSCRF include:

• New software: REs must obtain SBOMs for any new

software products or Software-as-a-Service (SaaS)

applications related to core and critical activities during

procurement.

• Existing software: SBOMs must be obtained for existing

critical systems within six months of CSCRF issuance.

• Ongoing updates: SBOMs must be updated with each

software upgrade or modification.

• Legacy systems: Where SBOMs are unavailable for

proprietary or legacy systems, RE boards must provide

approval, detailing the rationale and risk management

approach.

FIND OUT MORE ABOUT
INDIA’S CSCRE

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 62

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 62

BEST PRACTICES

BENEFITS FOR REGUL ATED ENTITIES IN INDIA WITH THE INTRODUCTION OF SBOMS:

☑ Transparency

REs will become more aware of components,

versions, licenses, cryptographic hashes, etc., that they

are using in their software applications.

☑ Tracking vulnerabilities

REs will be able to track the vulnerability status for each

of the components as and when an update is made or a

component is added/ deleted.

☑ Mitigate risks

REs will be able to prevent and mitigate supply chain

risks arising due to open-source or third-party depen-

dencies in software components.

☑ Audit

REs will have the confidence that only authorized third-

party dependencies have been used in their software

applications and that they can be audited as and when

required.

https://www.sonatype.com/blog/simplifying-sbom-compliance-with-sonatype-under-indias-cybersecurity-framework

Australia

The Essential Eight strategies are guidelines intro-

duced by the Australian Signals Directorate’s Strategies

to Mitigate Cyber Security Incidents. The Essential Eight

mitigation strategies include:

These strategies provide a framework for organizations

to evaluate current practices and increase their resiliency

against cyber threats. The Essential Eight is organized

around four maturity levels by which organizations can

evaluate and boost their cybersecurity measures.

M AT U R I T Y L E V E L Z E R O

This maturity level signifies that there are weaknesses

in an organization’s overall cybersecurity posture. When

exploited, these weaknesses could facilitate the compro-

mise of the confidentiality of their data or the integrity or

availability of their systems and data, as described by the

tradecraft and targeting in Maturity Level One below.

M AT U R I T Y L E V E L O N E

The focus of this maturity level is malicious actors who

are content to simply leverage commodity tradecraft that

is widely available in order to gain access to, and likely

control of, a system.

M AT U R I T Y L E V E L T W O

This maturity level focuses on malicious actors operating

with a modest step-up in capability from the previous

maturity level. These malicious actors are willing to invest

more time in a target and, perhaps more importantly, in

the effectiveness of their tools.

M AT U R I T Y L E V E L T H R E E

The focus of this maturity level is malicious actors who

are more adaptive and much less reliant on public tools

and techniques. These malicious actors are able to

exploit the opportunities provided by weaknesses in their

target’s cybersecurity posture, such as the existence of

older software or inadequate logging and monitoring.

Malicious actors do this not only to extend their access

once initial access has been gained to a target but also

to evade detection and solidify their presence. Malicious

actors make swift use of exploits when they become pub-

licly available, as well as other tradecraft that can improve

their chance of success.

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 63

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 63

BEST PRACTICES

T H E AU ST R A L I A E S S E N T I A L E I G H T

M I T I GAT I O N ST R AT E G I E S I N C LU D E :

☑ Application Control

☑ Patch Applications

☑ Configure Microsoft Office Macro Settings

☑ User Application Hardening

☑ Restrict Administrative Privileges

☑ Patch Operating Systems

☑ Multi-factor Authentication

☑ Regular Backups

AU ST R A L I A N I S M S O F T WA R E

D E V E LO P M E N T G U I D E L I N E S

Another Australian measure to boost cybersecurity is the

March 2024 update to the Australian Signals Director-

ate’s Information Security Manual (ISM). The ISM provides

a framework based on risk management principles and

best practices to help CISOs, CIOs, cybersecurity profes-

sionals, and IT managers protect their systems and data

from malicious actors.

The ISM includes cybersecurity guidelines designed

to ‘provide practical guidance on how an organization

can protect its systems and data from cyber threats.’

These include Guidelines for Software Development,

which provide a useful set of guidelines for creating tra-

ditional and mobile applications to increase security. The

ISM is a framework, so organizations are not yet required

by law to comply. However, it’s a useful tool for compa-

nies to ensure they do not violate existing legislation,

and under its guidance, organizations can put up a pretty

effective defense against data breaches.

MEET AUSTRALIAN ISM SOFTWARE
DEVELOPMENT GUIDELINES

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 64

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 64

BEST PRACTICES

K E E P U P W I T H T H E

L AT E ST R E G U L AT I O N S

A R O U N D T H E W O R L D

Navigating new regulations with

key resources and guidance for

staying informed and compliant.

CHECK OUT THE RESOURCE HUB

https://www.sonatype.com/resources/guides/meet-australian-ism-software-development-guidelines-with-sonatype
https://www.sonatype.com/resource-hub/regulations-and-compliance

Reliable Dependency Management

Since our inception, Sonatype has led with the precision

and accuracy of our open source intelligence. From the

start, our core principle has been to avoid wasting engi-

neers’ time with false positives and negatives. As open

source usage and security research exploded, the num-

ber of true risk findings has increased dramatically. This

has created a significant burden on development produc-

tivity, forcing organizations to choose between ignoring

material risks and impairing productivity.

The only possible path forward as we see it is to use a reli-

able dependency management automation platform that

scales as needed and only updates component versions

when necessary. This automation cuts down the noise,

reduces Persistent Risks, improves open source compo-

nent quality and creates a better malware defense while

saving valuable engineering time with full transparency.

Implementing reliable automation for open source

dependency management can have a

transformative shift in your organization:

• Reduced conflict and seamless collaboration between

security and engineering teams

• Improved productivity by freeing up 5% of engineering

capacity

• Enhanced security due to a significant drop in open

source risk levels

• Quality and reliability improvements by integrating

high-quality open source components

• Better competitive advantage through improved

security and increased productivity

As many organizations continue to make suboptimal

open source version choices, Sonatype’s intelligent soft-

ware composition analysis (SCA) enhances developer

efficiency and risk management without altering work-

flows. By prioritizing risks and automating dependency

management throughout the software development life

cycle (SDLC), we achieve significant improvements. This

win-win scenario boosts competitiveness and innovation

across the board.

Intelligent dependency management automation is set

to revolutionize software supply chain optimization,

making secure and efficient development as the industry

standard. By combining dependable automation with pri-

oritizations like advanced reachability analysis, devel-

opers are empowered to produce high-quality software

more quickly within their existing workflows. Security

teams gain from enhanced risk prioritization, focusing on

actionable vulnerabilities. Our tools integrate seamlessly

with collaboration platforms, enhancing the governance

of the dependencies.

S O N AT Y P E L E V E R AG E S T H R E E

U N I Q U E DATA S O U R C E S TO

U N D E R STA N D G LO B A L O P E N

S O U R C E S O F T WA R E U S AG E :

1. Millions of Enterprise Applications:
Regularly analyzed to track trends and behaviors

2. Sonatype’s Nexus Repositories:
Insight into hundreds of thousands of usage patterns

3. Maven Central:
Observing Java open source consumption patterns

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 65

EXECUTIVE SUMMARY

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 65

BEST PRACTICES

10TH ANNUAL STATE OF THE SOFTWARE SUPPLY CHAIN 66

Acknowledgments
Each year, the State of the Software Supply Chain report is a labor of love. It is produced to shed light on the patterns and

practices associated with open source, development and the evolution of software supply chain management practices.

The report is made possible thanks to a tremendous effort put forth by many team members at Sonatype, including:

Bruce Mayhew, Jamie Whitehouse, Vlad Drobinin, Anna Hubbard, Juan Felipe Morales, Mike Hansen, Shweta Katre,

Jeff Wayman, Brian Fox, Kishlay Nikesh, Tim Vrablik, Ilkka Turunen, Alli VanKanegan, Elissa Walters, Megan Schmidt and

Jenna Jameson. We would also like to thank our contributors from across the DevOps and open source development

community including Georg Link (CHAOSS Community), Dawn Foster (CHAOSS Community), and Jeremy Katz (Tidelift).

About the Analysis
Sonatype’s 10th Annual State of the Software Supply Chain report blends a broad set of public and proprietary data and

analysis, including dependency update patterns for more than 1.5 trillion requests from Maven Central and thousands of

open source projects, and the assessment of hundreds of thousands key enterprise applications. This year’s report also

analyzed operational supply, demand and security trends associated with the Java (Maven Central), JavaScript (npm),

Python (PyPI), and .NET (NuGet) ecosystems. Special analysis was included thanks to the CHAOSS Community and their

CHAOSS Community Report, as well as Tidelift and their survey of more than 400 open source maintainers as source for

The 2024 Tidelift State of the Open Source Maintainer Report. The authors have taken great care to present statistically

significant sample sizes with regard to component versions, downloads, vulnerability counts, and other data surfaced in

this year’s report.

Sonatype is the software supply chain security company. We provide the world’s best end-to-end software

supply chain security solution, by combining the only proactive malicious protection against malicious

open source, the only enterprise grade SBOM management and the leading open source dependency

management platform. This empowers enterprises to create and maintain secure, quality, and innovative

software at scale. As founders of Nexus Repository and stewards of Maven Central, the world’s largest

repository of Java open-source software, we are software pioneers and our open source expertise is

unmatched. We empower innovation with an unparalleled commitment to build faster, safer software and

harness AI and data intelligence to mitigate risk, maximize efficiencies, and drive powerful software devel-

opment. More than 2,000 organizations, including 70% of the Fortune 100 and 15 million software devel-

opers, rely on Sonatype to optimize their software supply chains. To learn more about Sonatype, please

visit www.sonatype.com.

https://www.sonatype.com/

